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Abstract

Serum paraoxonase (PON1), a 
glycoprotein synthesized in the liver, protects 
against oxidative stress and lipid peroxidation, 
potentially reducing the risk of chronic kidney 
disease (CKD). A study using bioinformatics 
methods, such as PROVEAN (Protein Variation 
Effect Analyzer), SIFT (Sorting Intolerant 
from Tolerant), Polyphen 2, and I-Mutant 2.0 
analyzed non-synonymous single nucleotide 
polymorphisms (SNPs) of the PON1 gene. The 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis and Gene Ontology 
(GO) enrichment were used to identify biological 
processes and pathways. SIFT analysis of the 
PON1 gene’s SNPs showed that 55 and 33 
were tolerable, and 22 were harmful alterations. 
According to PROVEAN analysis, 22 mutations 
were neutral, and 33 were harmful. Polyphen 2 
revealed that 26 were damaging and 32 were 
benign.  Thirty-four SNPs on I-Mutant analysis 
showed decreased thermodynamic stability, 
while twenty-one showed enhanced stability. 
The study found that the structure and function 
of the PON1 gene are impacted by mutations, 
with decreased stability predicted. These 
mutations may affect CKD’s pathobiology 
and risk for cardiovascular disease. A wet lab 
investigation on PON1 pathways could help link 
CKD pathophysiology and progression.

Keywords: In silico, Single nucleotide 
polymorphisms, Serum paraoxonase (PON1), 
chronic kidney disease (CKD).

Introduction

Health issues associated with chronic 
kidney disease (CKD) are widespread and 
negatively impact people worldwide. According 
to the 2010 Global Disease Burden Report, 
chronic renal disease was the 27th leading 
cause of death worldwide in 1990. However, 
chronic renal disease moved up to the 18th spot 
on the list in 2010 (1). CKD is the term used 
to describe abnormalities in kidney structure 
or function that have affected health and have 
been present for at least three months. Despite 
the aetiology, CKD is indicated by kidney 
damage or an estimated glomerular filtration 
rate (eGFR) of less than 60 mL/min/1.73 m² that 
persists for three months or more. According to 
GFR, CKD is classified into six groups by the 
Kidney Disease Improving Global Outcomes 
(KDIGO) 2012 classification (G1 to G5, with G3 
being further subdivided into 3a and 3b). It is 
also recommended that the cause of CKD be 
determined. The urinary albumin-creatinine ratio 
(ACR; mg/g or mg/mmol) in an early morning 
“spot” urine sample is used to categorize each 
stage of CKD. It also includes staging based on 
the three albuminuria levels (A1, A2, and A3) 
(2).
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Primary care doctors must detect and 
treat CKD in its early stages since CKD is linked 
to serious health issues such as cardiovascular 
disease, end-stage renal disease (ESKD), 
and mortality (3). Patients with CKD have a 
range of cardiometabolic diseases, including 
diabetes, insulin resistance, hypertension, 
and dyslipoproteinaemia, in addition to other 
physical abnormalities that may contribute to 
oxidative stress (4).

Highly reactive atoms or molecules 
known as free radicals possess one or more 
unpaired electron(s) in their outer shell and can 
be generated t hrough the interaction of oxygen 
with specific compounds (5). These radicals can 
be generated within cells and act as oxidants 
or reductants by either gaining or losing a 
single electron (6). Reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) 
refer to the reactive radical and non-radical 
derivatives of oxygen and nitrogen, respectively 
(7). Oxidative stress is defined by an imbalance 
in the production and elimination of reactive 
oxygen and nitrogen species (RONS), resulting 
from either their excessive generation or a 
diminished capacity to neutralize them and 
repair the resultant damage (8).

Free radicals and oxidative stress are 
recognized to be harmful to human health. 
Numerous studies demonstrate that free radicals 
do, contribute to the onset and progression of 
a variety of illnesses, including cardiovascular 
disease and cancer. The progression of CKD 
is primarily affected by oxidative stress, leading 
to glomerular damage, renal ischemia, and, in 
turn, contributing to inflammation, endothelial 
dysfunction, and arterial hypertension (9). 
Oxidative stress adversely affects the kidneys, 
which triggers the recruitment of inflammatory 
cells and the release of proinflammatory 
cytokines, culminating in an initial inflammatory 
phase.

Oxidative stress causes damaged cell 
components, including proteins, DNA, and 
lipids, to accumulate. Cells evolved several 
defense mechanisms, including detoxification, 
antioxidant enzymes, repair enzymes, and thiol-

redox systems, to prevent the harmful effects 
of oxidative stress. The “antioxidant defense 
system” of the cells is generally understood to 
consist of cellular enzymatic and non-enzymatic 
antioxidant components that work together 
in a complex network to keep the generation 
and clearance of ROS/RNS in balance (10). 
Antioxidants are essential for shielding our 
bodies from the harm caused by free radicals. 
They cleanse excess free radicals and balance 
their production (11). The term “antioxidant 
enzymes” refers to the majority of the 
enzymatic elements of this antioxidant defense 
mechanism, such as glutathione peroxidase, 
superoxide dismutase, and catalase. 
Paraoxonase 1 (PON1) and other antioxidant 
enzymes are essential for combating oxidative 
stress and supporting HDL’s antiatherogenic 
properties (12). The objective is to investigate 
whether PON1 plays a mechanistic role in 
the development of cardiovascular disease 
associated with chronic renal illness.

Investigations indicate that the activity 
and concentration of PON1 are influenced by two 
prevalent polymorphisms located in the coding 
region (at positions 55 and 192). Variations in 
PON1 serum concentrations and the incidence 
of cardiovascular disease have been linked 
to the leucine/methionine polymorphism 
at position 55 of the amino acid sequence 
(L55M) (13). The Q192 isoform has been 
shown to hydrolyze paraoxon and metabolize 
oxidized LDL more efficiently than the R192 
isoform, indicating that the glutamine/arginine 
polymorphism at position 192 (Q192R) impacts 
the PON1 function (14). PON1 serves a crucial 
role in physiological processes, highlighted 
by the association between diminished PON1 
activity and a heightened risk of cardiovascular 
disease. 

Single-nucleotide polymorphisms, or 
SNPs, are the most prevalent genetic variation 
(15). As a result of the advancements, the 
dbSNP database of technologies for next-
generation sequencing currently contains over 
950 million SNPs in the human genome -(http://
www.ncbi.nlm.nih.gov/SNP/) (16). SNPs are 
polymorphisms in a single nucleotide that affect 



Current Trends in Biotechnology and Pharmacy
Vol. 19(2) 2268-2281, April 2025, ISSN 0973-8916 (Print), 2230-7303 (Online)
DOI: 10.5530/ctbp.2025.2.14

Supriya et al

2270

the DNA sequence (A, T, C, or G). SNPs are 
estimated to occur at a frequency of 1 in 1,000 
bp across the genome. These minute variations 
might be transient or transversional. About 
25% of SNPs cause silent mutations, which 
do not change translated amino acids; 25% 
cause missense mutations, sometimes known 
as coding SNPs or cSNPs, and 50% occur in 
noncoding regions. Known as synonymous 
SNPs, these quiet SNPs are probably not 
infl uenced by natural selection (17). Conversely, 
natural selection may aff ect nonsynonymous 
SNPs (nSNPs, change-encoded amino acids), 
which can result in pathology. Both synonymous 
and nonsynonymous SNPs aff ect pre-mRNA 
conformation (or stability) and promoter activity. 
They also modify a protein’s subcellular location 
and capacity to bind its substrate or inhibitors 
(SNPs) (18). Thus, they might be responsible 
for genome evolution, drug deposition, and 
disease susceptibility. 

Thanks to bioinformatics techniques 
for in silico gene analysis, screening a large 
number of people is no longer necessary to fi nd 
a statistically signifi cant association between 
genes and illnesses. Stated diff erently, these 
methods facilitate SNP pre-selection (19). 
Separating disease-associated SNPs from 
neutral SNPs would be highly benefi cial before 
using wet lab-based techniques. In silico 
analysis can be helpful when independent future 
research cannot establish the links between 
the illnesses (20). Thus, it may be possible to 
distinguish between true and false positives 
using independent proof of SNP functioning 
discovered by applying prediction algorithms.

The study intends to perform an in silico 
analysis of PON1 and its receptor gene using 
bioinformatics tools such as sorting the intolerant 
from tolerant (SIFT), Protein Variation Eff ect 
Analyzer (PROVEAN), Polyphen 2, I-mutant 
software, and protein-protein interactions 
by STRING database to ascertain the likely 
detrimental eff ects of mutations and protein-
protein interactions of these genes. The present 
study may indicate that experimental research 
is necessary to investigate the possible role 
of PON1 gene alterations in pathobiology, 

progression, and risk of cardiovascular disease 
(CVD) in CKD. 

This study aims to do a preliminary 
bioinformatics analysis of SNPs in the 
paraoxonase 1 (PON1) gene and investigate 
possible potential associations with CKD. The 
analysis was conducted using in silico techniques 
to identify functionally signifi cant SNPs, predict 
the probable impact on PON1 gene expression 
or protein function, and explore their possible 
roles in the pathophysiology of CKD.

Materials and Methods

The analysis of the PON 1 gene using 
bioinformatic tools (SIFT, PROVEAN, Polyphen 
2, and I-Mutant) is shown in Figure 1.

Figure 1: Illustrating the use of bioinformatics 
tools (SIFT, PROVEAN, Polyphen 2, and 
I-Mutant 2.0) for gene analysis.

 Employing a bioinformatics program to 
analyze PON1 gene SNPs for stability, damage, 
and benignity. The main sources of information 
on the human PON1 gene were the National 
Center for Biological Information (http://www.
ncbi.nlm.nih.gov/) (21). The polymorphism data 
on SNPs of the human PON1 gene and related 
metadata were obtained for the computational 
analysis from the publicly accessible online 
database dbSNP-NCBI (http://www.ncbi.nlm.
nih.gov/SNP/) and protein sequence from 
FASTA(http://www.ncbi.nlm.nih.gov/SNP/).
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Sorting intolerant from tolerant (sift) 
approach

The functional impact of damaging 
nsSNPs was evaluated by sorting intolerant from 
tolerant (SIFT), a sequence homology-based 
approach. To ascertain whether a change in an 
amino acid could affect protein function and, 
consequently, alter phenotype, SIFT (Sorting 
Intolerant From Tolerant) uses sequence 
homology (22). When used on human variation 
datasets, SIFT could differentiate between 
neutral polymorphisms and mutations implicated 
in disease. We applied SIFT to a database of 
missense substitutions linked to or involved in 
disease, assuming that amino acid alterations 
that cause disease are detrimental to protein 
function (23). SIFT calculates the normalized 
probability for each mutation in terms of the 
tolerance index (TI) score or SIFT score. SIFT 
scores can be classified as potentially intolerant 
(0.051-0.10), tolerant (0.201-1.00), borderline 
(0.101-0.20), or intolerant (0.00-0.05) (24). As 
the tolerance index rises, the probability that an 
amino acid substitution will have an effect falls.

Structural homology-based (PolyPhen) 
approach

The functional effects of coding nsSNPs 
were analysed using a structural homology-
based approach (PolyPhen). A computational 
technique for identifying potentially useful 
nsSNPs is PolyPhen (25). By using fundamental 
physical and comparative concepts, this 
technique (Polymorphism Phenotyping 2) 
forecasts how modifications in amino acids may 
impact the structure and functionality of human 
proteins (26). Making use of PolyPhen 2 (http://
genetics.bwh.harvard.edu/pph2). The possible 
effects of a change in an amino acid on the 
structure and functionality of the PON1 protein 
were examined. The protein sequence including 
the mutational site was submitted to the server 
along with two different amino acid variants. 
Predictions are based on a combination 
of structural, phylogenetic, and sequence 
annotation information that characterizes a 
substitution and where it occurs in the protein. 
The PolyPhen score assigns specificity and 

sensitivity values to nsSNPs and divides them 
into three primary categories: benign, perhaps 
harmful, and probably harmful.

Assess the functional impact of coding 
nsSNPs by PROVEAN

The function of the standalone 
PROVEAN software package distribution can 
be accessed online through the “PROVEAN 
Protein” interface. Its primary purpose is 
anticipating a protein sequence from any 
creature. The program generates PROVEAN 
scores after obtaining a protein sequence along 
with changes in amino acids. It then performs 
a BLAST search to identify homologous or 
supporting sequences (27). The Protein 
Variation Effect Analyzer or PROVEAN, predicts 
how each class of protein sequence variants—
including insertions, deletions, and multiple 
substitutions in addition to single amino acid 
changes—will affect the alignment-based score 
(28). The score calculates how much a query 
sequence’s sequence similarity to a protein 
sequence homolog changes when an amino 
acid variant of the query sequence is added or 
removed. If the protein variation’s PROVEAN 
score is less than -2.5, it is predicted to have 
a “deleterious” effect; if it is larger than -2.5, 
it is predicted to have a “neutral” effect. The 
PROVEAN tool can be accessed at http://
provean.jcvi.org (29).

Assessment of the functional impact of 
coding nsSNPs by I-Mutant 2.0

I-Mutant2.0 (http://folding.biofold.org/i-
mutant/i-mutant 2.0.html), a support vector 
machine-based tool, is used to predict the 
impact of nonsynonymous mutations on protein 
stability. For the first time, I-Mutant2.0 can 
predict the extent to which a protein sequence 
mutation will or won’t affect the folded protein’s 
stability. Additionally, it can predict the changes 
in the stability of the altered protein structure 
(30). According to the technique, I-Mutant 2.0 
scores larger than zero are assumed to indicate 
enhanced stability, whereas numbers less than 
zero will reflect lower stability.
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STRING analysis

STRING refers to the Search Tool for 
the Retrieval of Interacting Genes (STRING). 
Finding knowledge about protein-protein 
interactions is a significant task in fundamental 
biological research and aids in the identification 
of new therapeutic targets for the treatment of a 
range of illnesses. Protein-protein interactions 
must be experimentally probed using time-
consuming methods like affinity chromatography 
or co-immunoprecipitation. High-throughput 
testing methods include mass spectrometry and 
yeast two-hybrid screens. As a result of these 
developments, a variety of computer techniques 
have been created to forecast networks 
of protein-protein interactions by building 
databases like STRING (31). The STRING offers 
exceptionally thorough coverage and convenient 
access to information on both anticipated and 
experimental interactions. STRING assigns a 

confidence score to interactions within a stable 
and consistent identifier space, in addition to 
auxiliary information like as protein domains 
and three-dimensional structures. STRING 
version 9.0, accessible at http://string-db.org 
(32), covers over 1100 completely sequenced 
organisms. To find biological processes and 
pathways, KEGG pathway analysis and Gene 
Ontology (GO) enrichment were employed.

Results and Discussion

Identification of harmful and tolerant SNPs

Using the gene ID 5444, the dbSNP was 
used to get the SNPs in the human PON1 gene. 
Out of the 55 SNPs examined, 22 variants were 
determined to be harmful, and the remaining 
variants were to be tolerated when the SNPs 
were submitted to the SIFT tool to predict their 
impact on protein function. Table 1 presents the 
comprehensive outcome.

Table 1: The number and percentage of SNPs damaging, tolerated, and decreased protein stability 
results of the PON1 gene.

Bioinformatic tools PON1 gene (55 SNPs)
SIFT 40% (22no’s) Deleterious 60% (33no’s) tolerated
Polyphen2 32% (18no’s) damaged 37% (68no’s) benign
PROVEAN 60% (33no’s) (deleterious 40% (22no’s) Neutral
I-Mutant 2.0 62% (34no’s) decreased stability 48% (31 no’s) increased stability

nsSNPs damaged by the PolyPhen 2 server

The PolyPhen 2 server received all 
55 missense nsSNPs that were submitted to SIFT.  
Of the 55  SNPs, 26  were thought to be likely 
harmful. Table 2 shows that the results from the 
structurally based technique PolyPhen and the 
evolutionary-based approach SIFT showed a 
substantial correlation. Twenty -two of the SNPs 
identified by PolyPhen as likely harmful were 
also found to be harmful by SIFT, indicating that 
these nsSNPs may impair the structure and 
function of proteins.

Destructive nsSNPs discovered by I-Mutant 
2.0

The stability of protein structural 
changes is predicted by using an online tool 
called I-Mutant 2.0. Table 2 displays the 

outcomes for each of the 55 missense SNPs’ 
inputs. The free energy change upon mutation 
is anticipated to either increase or decrease. 
It was discovered that 34  of the 55  SNPs 
examined resulted in a drop in free energy. 

Functional Characterization of PON1 by 
PROVEAN

PROVEAN predicts 33 out of 55 as 
deleterious and remaining as neutral mutations. 
Table 2 shows the outcomes for each of the 
55 missense SNPs. The PROVEAN analysis 
yielded a greater number of harmful SNPs 
than the SIFT analysis did. This might be 
because, in addition to amino acid alterations, 
the PROVEAN tool can also evaluate insertions 
and deletions.
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Table 3 shows the accepted range of damaging 
and Tolerant SNPs using SIFT, Ployphen, and 
PROVEAN bioinformatic tools and the accepted 
range of their stability through I-Mutant 2.0. 

Figure 2 Shows the Percentage of deleterious 
and Tolerant SNPs by using Bioinformatic tools 
(SIFT, PROVEAN, Polyphen 2, and I-Mutant 
2.0).

Table 3: Bioinformatic tools (SIFT, PROVEAN, Polyphen 2, and I-Mutant 2.0) showing damaging 
and tolerated ranges of the PON1 gene.
BIOINFORMATIC TOOL Damaged/Deleterious Tolerated
SIFT 0.0 – 0.05 0.05 – 1
POLYPHEN 2 0.5 – 1 0.00 – 0.5
PROVEAN <-2.5 >-2.5
I-Mutant 2.0 <0 (decreased stability) >0 (increased stability)

Figure 2: Comparison of deleterious and 
tolerated PON1 gene by bioinformatic tools 
(SIFT, PROVEAN, Polyphen 2, and I-Mutant 
2.0).

Using STRING analysis, Figure 3 
depicts the PON1 protein-protein interaction 
(PPI) network. The network has 50 edges and 
11 nodes (proteins), with a clustering coeffi  cient 
of 0.949 and a high average node degree 
of 9.09. The proteins are at least somewhat 
physiologically related to one another, according 

to the PPI enrichment p-value of 1.11e-16. 
The network’s nodes are proteins. The edges 
represent the proposed functional links. Eight 
diff erent colored lines representing the presence 
of the eight diff erent categories of evidence that 
were taken into consideration while predicting 
the linkages were drawn on an edge in evidence 
mode (Fig. 3).

Bluish-green lines are derived from 
carefully selected databases; pink lines are 
experimentally determined; green lines indicate 
gene neighborhoods; violet lines indicate gene 
co-occurrences; reddish-green lines indicate 
text mining; black lines indicate co-expression; 
and blue lines indicate protein homology. 
Table 4 shows the predictions of the functional 
partner genes with the PON1 gene through the 
STRING Analysis. This table also explains the 
Co-expression and Experimental interaction of 
various genes and their combined score with 
the PON1 gene.

Figure 3: STRING analysis showing PON1 interacting with other proteins
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Figure 4 shows the k-means clustering of 
proteins involved in PON1 and associated 
metabolic pathways. The proteins have been 
grouped into clusters based on their biological 
roles. Cluster 1 (red) highlights high-density 
lipoprotein synthesis with nine genes, including 
LCAT and APOA1, which play a multifaceted role 
in triglyceride homeostasis and prevent stress-
induced aggregation of blood plasma proteins. 
Cluster 2 (green) includes CETP synthesis, with 
one gene involved in the regulation of reverse 
cholesterol transport. Cluster 3 (blue) highlights 
PON 3 synthesis, which works similarly to 
hydrolyzing aromatic lactones and lactones 
with aliphatic substituents in rings of fi ve or six, 
but not simple lactones or lactones with polar 
substituents.

Figure 4: Showing K-means cluster analysis of 
PON1 with other proteins

Figure 5 shows the MCL clustering 
of proteins involved in PON1 and associated 
metabolic pathways. The proteins have been 
grouped into clusters based on their biological 
roles: MCL clustering shows only one cluster 
(red) highlighting high-density lipoprotein 
synthesis, eleven genes, including CETP, 
LCAT, APOA1, etc. (Fig. 5), which inhibits the 
aggregation of blood plasma proteins brought 
on by stress and has a variety of functions in 
maintaining triglyceride homeostasis.

Figure 5: Showing MCL cluster analysis of 
PON1 with other proteins
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Figure 6 shows the DBSCAN clustering of 
proteins involved in PON1 and associated 
metabolic pathways. The proteins have 
been grouped into clusters based on their 
biological roles: DBSCAN clustering shows 
only one cluster (Red) highlighting high-density 
lipoprotein synthesis, ten genes, including CETP, 
LCAT, APOA1, etc. (Fig. 6), which inhibits the 
aggregation of blood plasma proteins brought 
on by stress and has a variety of functions in 
maintaining triglyceride homeostasis.

Figure 6: Showing DBSCAN cluster analysis of 
PON1 with other proteins

Figure 7 highlights the biological processes 
associated with PON1 and its interacting 
proteins. Notable terms include: Lipoprotein 
metabolism is involved in reverse cholesterol 

transport, plasma lipoprotein particle remodeling, 
high-density lipoprotein remodeling, and 
triglyceride-rich lipoprotein particle remodeling.
Cholesterol transport and cholesterol effl  ux play 
a signifi cant role in cholesterol homeostasis. 
The enrichment of these terms supports the 
theory that disruptions in PON1 or its network 
can impact lipid metabolic pathways, and 
its decreased levels may potentially lead to 
cardiovascular risk in CKD Patients. The KEGG 
pathway analysis identifi es signifi cant metabolic 
pathways involving PON1 gene.

Cholesterol metabolism is directly 
involved in absorbing, synthesizing, and 
transporting cholesterol in the body; the PPAR 
signaling pathway controls the expression of 
genes related to the intake, storage, oxidation, 
and metabolism of fatty acids. Participates in 
the process of vitamin absorption and digestion. 
These enriched pathways demonstrate 
PON1’s centrality in maintaining cholesterol 
homeostasis, and the network can impact lipid 
metabolic pathways; its decreased potentiality 
leads to cardiovascular risk in CKD patients.

Figure 7: Gene Ontology (GO) biological processes enrichment of PON1 gene by STRING Analysis

 The results across fi gures and tables 
collectively depict PON1 as a central enzyme 
in lipid metabolism. Its interactions with other 
proteins like apoproteins and lipoproteins 

and their biosynthesis pathways, as well as 
its relevance to various biological processes, 
highlight its signifi cance. These fi ndings provide 
a strong foundation for the decreased PON1 
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gene potentiality, which leads to cardiovascular 
risk in CKD Patients.

Discussion

The susceptibility of these patients to CVD 
often makes care more challenging, even 
with advancements in CKD management 
approaches. A possible key factor in the 
disproportionate morbidity and mortality from 
cardiovascular disease is the defective High-
Density Lipoprotein (HDL). The PON-1 enzyme, 
which is produced by the liver, binds to High-
Density lipoprotein (HDL) cholesterol and 
circulates. Reduced PON-1 activity has also 
been connected to adverse outcomes and a 
higher risk of CVD (33). The HDL-associated 
protein PON1 can hydrolyze oxidized LDL 
cholesterol, perhaps protecting against 
atherosclerosis. Additionally, PON1 can break 
phospholipid peroxidation adducts, which 
may have cytoprotective effects (34).  The 
degree of coronary lesion was predicted by the 
decline in PON1 activity in serum, which was 
demonstrated to have a significant protective 
function in the development of atherosclerosis 
(35). Many inflammatory conditions, including 
systemic lupus erythematosus, rheumatoid 
arthritis, diabetes mellitus, and several hepatic 
and renal conditions, such as renal failure, 
psoriasis, and macular degeneration, are linked 
to low serum PON1.   These disorders are 
likewise characterized by elevated rates of CHD 
and malfunctioning HDL, which is thought to be 
(though not confirmed) brought on by decreased 
PON1 activity (36). Multiple polymorphisms in 
the coding and promoter areas affect PON1 
function and gene expression levels. The most 
prevalent polymorphisms in the area that codes 
for PON1 are Q192R, which contains a leucine 
(L) to methionine (M) substitution at codon 55 
and a glutamine (Q) to arginine (R) change at 
codon 192 (35).

The PON1 gene was analyzed in 
silico using SIFT, PolyPhen-2, PROVEAN, and 
I-Mutant, which yielded important information 
about the structural and functional effects of 

its genetic variants. The outcomes of these 
instruments show how particular single 
nucleotide polymorphisms (SNPs) may affect 
PON1’s stability and enzymatic activity, which 
are essential for its physiological function 
in detoxification and antioxidation. SIFT, 
PolyPhen-2, PROVEAN, and I-Mutant results 
indicate lower protein stability and higher 
harmful and detrimental scores. This may 
have important ramifications for oxidative 
stress-related diseases like cardiovascular and 
neurological problems.

The protein-protein interaction (PPI) 
network, biochemical pathways, and metabolic 
processes linked to PON1 are all thoroughly 
examined in the STRING ANALYSIS research. 
Every figure and table produced by this study 
emphasizes a distinct aspect of the biological 
network of PON1 and its relevance to human 
health and illness.

A comprehensive understanding of 
PON1’s function in metabolism is offered by 
the combination of STRING analysis, clustering 
techniques, GO enrichment, and KEGG 
pathway mapping. The study confirms PON1’s 
pivotal role in cholesterol metabolism and its 
subsequent impact on the risk of cardiovascular 
disease. 

Conclusion

According to this preliminary bioinformatics 
research, single nucleotide polymorphisms 
(SNPs) in the PON1 gene may play a part in the 
aetiology of CKD. SIFT, PROVEAN, PolyPhen-2, 
I-Mutant, and STRING were used to determine 
the potential impacts of genetic variations 
on the structure, function, and interactions of 
the PON1 protein. Utilizing in silico tools, we 
identified key SNPs that may influence PON1 
function, particularly in oxidative stress and 
lipid metabolism pathways, which are critical 
in developing CVD risk in CKD progression. 
Future research should concentrate on bridging 
computational predictions with functional 
studies to investigate the molecular significance 
of PON1 variations in CKD and evaluate their 
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potential as diagnostic or therapeutic targets.
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