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Abstract

Memory challenges and cognitive de-
cline, linked to neurodegenerative illnesses,
continue to rise worldwide without effective
remedies. Traditional medicinal plants have
shown promise in mitigating these conditions.
This study evaluated synergy-based aqueous
combinations of Spondias mombin, Spilanthes
filicaulis, and Piper guineense for learning and
memory enhancement. Two formulations, H1
(ratio 2:2:4) and H2 (ratio 2:2:2), were prepared,
administered, and assessed using the Morris
Water Maze and Y-maze tests, alongside bio-
chemical analyses of oxidative stress markers
(MDA, H,0,, SOD, GSH, GPx, GST), nitric
oxide levels, and acetylcholinesterase activity.
Histopathological examination of the hippocam-
pus was also performed. Results showed that
scopolamine impaired learning and memory, el-
evated oxidative stress, and caused hippocam-
pal damage. However, treatment with the com-
bined extracts H1 and H2 significantly improved
spatial learning and working memory compared

to scopolamine controls, as evidenced by re-
duced escape latency and increased spon-
taneous alternation. Additionally, H1 and H2
lowered oxidative stress markers, restored
antioxidant enzyme balance, reduced AChE
activity, and ameliorated neuronal disruptions.
Among the two formulations, H1 consistent-
ly demonstrated superior neuroprotective and
antioxidant effects across behavioral and bio-
chemical assays. These findings suggest that
synergy-based combinations of these plants,
particularly H1, may offer a promising approach
for memory enhancement and warrant further
investigation for development into an herbal
therapeutic product.

Keywords: Medicinal plants, Synergistic com-
bination treatment, Neurodegenerative disor-
ders, Antioxidant, Acetylcholinesterase activity.

Introduction

The aging demographic contributes to
the escalating prevalence of memory impair-
ment and dementia worldwide (1). Alzheimer’s
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disease (AD), the primary cause of dementia,
progressively impairs intellectual functions cen-
tered in the Wernicke areas, affecting learning,
memory, language, and personality(2). Elderly
individuals are primarily affected by this degen-
erative neurological ailment, resulting in a de-
cline in cognitive abilities and memory function
(3,4). Contrary to normal aging, AD is charac-
terized by its distinct pathological nature (5).
According to Alzheimer’s Disease International
(ADI), global dementia diagnoses surpass 9.9
million yearly, with a startling frequency of one
diagnosis every 3.2 seconds(6). Furthermore,
the latest data from the World Health Organiza-
tion (7), positions dementia as the world’s sev-
enth leading cause of death, based on the 2019
Global health estimates released in December
2020.

Alzheimer’s disease (AD) risk factors
encompass genetic elements like the ApoE4
gene and environmental influences such as
age, depression, and metabolic conditions
like diabetes and hyperlipidemia(8,9)which is
characterized by a decline in thinking and in-
dependence in personal daily activities. AD is
considered a multifactorial disease: two main
hypotheses were proposed as a cause for AD,
cholinergic and amyloid hypotheses. Additional-
ly, several risk factors such as increasing age,
genetic factors, head injuries, vascular diseas-
es, infections, and environmental factors play a
role in the disease. Currently, there are only two
classes of approved drugs to treat AD, including
inhibitors to cholinesterase enzyme and antag-
onists to N-methyl d-aspartate (NMDA. Recent
research highlights multiple contributors to cog-
nitive function impairment, encompassing chem-
icals, genetic associations, medications, disor-
ders, and the natural aging process (10,11). In
addition, studies indicate associations between
AD pathologies and oxidative stress, inflamma-
tion, hyperhomocysteinemia (10), loss of specif-
ic neuronal populations, reduced synaptophysin
immunoreactivity, and depletion of cholinergic
fibers (12), Although, anticholinesterase drugs
are used for neurodegenerative diseases, their

limitations; such as low bioavailability, hepato-
toxicity, and short action duration; have led to
intensified pharmaceutical research focusing on
natural acetylcholinesterase (AChE) inhibitors
from plants with fewer side effects (10,13—-15).
This pursuit aims to address cholinergic deficits
and enhance neurotransmission, potentially
halting or slowing disease progression. A com-
prehensive, multi-targeted approach appears
essential in effectively addressing memory-re-
lated disorders.

Traditional African medicine relies on
numerous medicinal plants for treating intel-
lectual disorders, including neurodegenerative
diseases (1). These plants contain active com-
pounds known as potent acetylcholinesterase
(AChE) inhibitors (16), essential for slow-acting
chemical communication within the nervous and
cholinergic systems (17). Additionally, the com-
bination of active compounds within herbs can
produce synergistic pharmacological effects,
as demonstrated by studies like Mak et al (3),
which highlighted the potential of combining
alkaloids from Coptidis rhizoma and Corydalis
rhizome. Similarly, Khan et al (10) reported the
synergistic combination of Withania somnifera
and Myristica fragrans effectively inhibiting anti-
cholinesterase activity.

Spondias mombin, also known as hog
plum, belongs to the Anacardiaceae family and
is originally native to the tropical regions of the
Americas. However, it has spread widely and is
now found across many parts of Asia and Afri-
ca (18). Traditionally, various parts of the plant,
including its stem bark, leaves, and roots, have
been used in folk medicine to address a range
of health conditions (19). cientific studies have
highlighted its antimicrobial (20), antioxidant
(19,21), and antidiabetic properties (22), sup-
porting its long-standing use in natural healing
practices.

Spilanthes filicaulis, commonly
called Creeping Spot Flower or African Cress, is
widely distributed across tropical and subtrop-
ical regions of the world, including Africa, the
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Americas, Borneo, India, Sri Lanka, and parts
of Asia (23). It is an annual plant from the Aster-
aceae family, characterized by creeping growth
and prostrate stems that root at the nodes (24).
In Babungo, located in the Northwest Region
of Cameroon, the entire plant is traditionally
used to treat ailments such as malaria, gastritis,
toothaches, and stomachaches (25). Research
has identified several biological activities asso-
ciated with this species, notably its antimalari-
al(26), antidiabetic(27), antimicrobial (28), anti-
fungal (29), and antioxidant activities (24,30).

Piper guineense, widely known as black
pepper, belongs to the Piperaceae family and is
distributed across Africa and various other re-
gions around the world, primarily for its culinary
importance (31). The plant holds significant val-
ue in traditional medicine, with its leaves tradi-
tionally used to help regulate menstrual cycles
and support the treatment of female infertility
(32). Scientific studies have also highlighted
its anti-inflammatory, anticonvulsant, and anti-
oxidant properties (33,34).

Additionally, an ethnobotanical survey
conducted in Southwest Nigeria highlighted the
tree plants for their traditional use as memory
enhancers and anti-aging remedies (35,36).
Also, each of them has been screened either
in vitro to inhibit the acetylcholinesterase activ-
ity or in vivo to protect against neurochemical
alterations and oxidative stress in the scopol-
amine model of cognitive dysfunction (30,37—
44). Moreover, Hounsou et al (45) demonstrat-
ed the promising in vitro antioxidant potential of
the combined extract from these three plants.
The current study aims at developing a syn-
ergy-based combined extract of these plants
in different ratios for learning and memory en-
hancement to suggest the ratio suitable for
herbal product formulation based on favorable
pharmacological effects and toxicological pro-
files.

Plant collection, processing and extraction

Samples of S. mombin leaves harvest-
ed from Ondo Road, Akure; entire S. filicaulis

plants collected from llu abo, Ondo State; and
dried P. guineense fruits sourced from Bode
market, Ibadan, Oyo State, underwent botani-
cal identification and authentication at the Her-
barium of the Department of Botany, Universi-
ty of Ibadan, Nigeria. The voucher specimens
are UIH-23260 (Spondias mombin), UIH-24241
(Spilanthes filicaulis), and UIH-23258 (Piper
guineense). After air-drying and pulverizing the
plant materials, the powdered samples were
combined. Combination H1 was prepared at a
2:2:4 ratio, while combination H2 utilized a 2:2:2
ratio. These mixtures were macerated with dis-
tilled water for 72 hours, with stirring every 24
hours. The filtrate of each combination was
freeze-dried, and up until their use, concentrat-
ed extracts were kept refrigerated at 4°C.

Procurement, housing, and acclimatization
of animals

Ten-week-old male and nulliparous fe-
male albino mice (weighing 18-29 g) were pro-
cured from the Experimental Animal Unit, Uni-
versity of Ibadan, Nigeria. The selection of the
animals was done following the Animal Care and
Use Research Ethics Committee (ACUREC),
University of Ibadan, Nigeria's approval under
the protocol number UI-ACUREC/061-0723/11.
Mice, confirmed healthy, were housed in poly-
propylene cages (10 males or 5 females per
cage) with wood shavings, and provided a stan-
dard pellet diet, and ad-libitum supply of water
for two weeks before experimentation.

Acute toxicity and behavioural changes

Following the Organization for Eco-
nomic Co-operation and Development guideline
(46), twenty fasted female mice were adminis-
tered oral doses of combined extracts H1 and
H2 at 300 mg/kg and 2,000 mg/kg to determine
their acute toxicity. Post-extract administration,
mice were monitored immediately and at 30, 60
minutes, 4 hours, and 24 hours for signs of tox-
icity. Daily checks over 14 days included mon-
itoring for salivation, defecation, convulsions,
skin/fur changes, eye/mucous membrane alter-
ations, respiratory changes, behavior patterns.
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Also, weight loss was monitored every three
days.

Experimental design and treatment

For the experiment, albino mice were
randomly divided into nine groups, each con-
sisting of 10 mice. Following the period of ac-
climatization, all animals except those in the
normal control group (Group 1) were pretreated
intraperitoneally with 2 mg/kg of scopolamine
for three consecutive days. Starting from day 4
post-scopolamine induction, Group 1 received
oral distilled water (0.2 mL/mouse), Group 2 also
received oral distilled water and was assigned
as the negative control group, while Group 3
was given piracetam orally (200mg/kg) to serve
as the positive control. Top of FormGroups 4-6
received oral doses of combined extract H1
(at 150 mg/kg, 100 mg/kg, and 50 mg/kg, re-
spectively), and Groups 7-9 received combined
extract H2 (at 150 mg/kg, 100 mg/kg, and 50
mg/kg, respectively). Ten days post-administra-
tion, mice underwent three days of Morris water
maze training followed by a reference memory
test (probe test) on the 14th day, and finally, a
Y-Maze test. Dosing continued from the 10th to
the 14th day for assessment. The experimental
procedure is described in Figure1.
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Figure 1: Scheme of the experimental proce-
dure.

Neurobehavioural test
Morris water maze test

Applying the technique described by
Khan et al (10), the Morris water maze task was
performed to assess mice’s spatial learning

in a sizable setting. The maze was made of a
circular tank (125 cm diameter, 34 cm height)
held water (15 cm height), made opaque by the
addition of evaporated milk. A Tracking system
(ANY-maze 7.20), connected to a camera was
used to facilitate the recording of the swimming
pattern of mice. The tank was divided into four
quadrants, hiding a submerged platform (14 cm
height, 1 cm below water level) in one quad-
rant. Over four days, comprising three training
days and one probe trial, mice underwent four
of 120-second ftrials each day from different
starting positions. The escape latency (i.e., the
time taken by the mice to locate the hidden plat-
form) was recorded. Mice that were unable to
locate the platform within a 2-minute timeframe
were subsequently positioned on it for a dura-
tion of 15 seconds. Up to 15-20 minutes gap
separated the trial sessions. On the fourth day,
the hidden platform was taken away, and during
a 120-second ftrial, entries over the previous
platform location and time spent in the target
quadrant were recorded to evaluate memory re-
tention and spatial recall. This methodology al-
lowed for efficient assessment of mice’s spatial
navigation abilities without manual data record-
ing, ensuring a comprehensive understanding
of their learning capabilities in the maze envi-
ronment.

Y- Maze test

In assessing short-term memory in
mice via the Y maze test as described by Krae-
uter et al (54), a wooden maze with three arms
A, B, and C, oriented at an angle of 120 °C to
each other was used. Mice were positioned in
the maze center and given 5 minutes to explore
the arms, and their arm entries and alternations
were recorded. Cleaning of the maze with 70%
ethanol before and between tests was performed
to maintain consistency of conditions. An entry
was noted when the animal went into an arm
with all its paws, while an alternation occurred if
the mouse consecutively entered all three arms
in a sequence (e.g., ABC, CAB). This rigorous
protocol ensured standardized testing condi-
tions, enabling accurate assessment of mice’s
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short-term memory performance. The total arm
entries and proportion of spontaneous alterna-
tions were determined by applying the equation
below:

%Alternation = (Number of Alternations /
[Total number of arm entries — 2]) x 100

Tissue Processing

On the final day, euthanasia via cervi-
cal dislocation on ice was performed on the an-
imals. From each group of 10 mice, the brains
of 4 were dissected entirely, with the hippocam-
pus sectioned for biochemical tests. Similarly,
brains from 4 mice in each group underwent
preservation in phosphate formalin buffer after
cardiac perfusion using normal saline and 10%
phosphate formalin buffer for histopathology
as previously outlined by Olopade et al (72).
The isolated hippocampus tissues were rinsed,
weighed, homogenized in ice-cold homogeniz-
ing buffer (0.1 M phosphate buffer, pH 7.4), then
centrifuged at -4 °C (12,000 rpm for 10 min-
utes). The resulting post-mitochondrial fraction
(PMF) was collected for biochemical parameter
assessments according to Oyagbemi et al (73).

Biochemical assays
Biomarkers of oxidative stress
Estimation of MDA level

Hippocampal lipid peroxidation was
carried out by measuring thiobarbituric acid re-
active products using the procedure reported
by Varshney and Kale (74). Briefly, 200 pL of
supernatant was added to Tris-KCI buffer (800
HL, 0.15M, pH 7.4), Trichloroacetic acid (500
ML, 30%), and Thiobarituric acid (500 pL, 0.7%).
The solution was mixed thoroughly and heated
in water bath at 80°C for 45 minutes. It was then
cooled and centrifuged at 400 rpm for 10 min-
utes. The absorbance of the supernatant was
read at a wavelength of 532nm, and findings
were denoted as Units/mg protein.

Estimation of H,0, level

The hydrogen peroxide (H,O,) genera-
tion was determined according to the procedure

reported by Wolff (75). Basically, 1mL of buffer,
ammonium ferrous sulphate (100 L), sorbitol
(40 pL), xylenol orange (40 pL), H,SO, (20 pL)
were added to 40 pL of sample (supernatant).
The solution was mixed thoroughly and incubat-
ed at 25°C for 30min. The absorbance was read
at a wavelength of 560nm and H,O, generated
was extrapolated from H,O, standard curve.

Measurement of
(AChE) activity

acetylcholinesterase

The acetylcholinesterase activity was
assayed spectrophotometrically in mice’s hip-
pocampus as reported by Turner et al (76).
Then, a reaction mixture containing 1 mL of
buffered Ellman’s reagent and 300 uL of acet-
ylthiocholine iodide solution was added 200 uL
of supernatant. The absorbance was then mon-
itored at 412 nm over a period of 3 minutes at
30 seconds interval using UV-Vis spectropho-
tometer. Activities were expressed as mmole of
substrate/min/mg protein.

Hippocampal antioxidant defense system
Determination of superoxide dismutase
(SOD) activity

Superoxide dismutase (SOD) activity
in homogenates was assessed based on the
procedure of Fridovich (77) with minor modi-
fications by Oyagbemi et al (78). An aliquot of
100 pL of supernatant was added to carbon-
ate buffer (20mL, pH 10.2) to equilibrate in the
spectrophotometer and the reaction was started
by the addition of freshly prepaered adrenaline
(300 pL, 0.3mM) to the mixture wich was quickly
mixed by inversion. The increase in absorbance
at a wavelength of 480nm was monitored every
30 seconds for 150 seconds. 1 unit of SOD ac-
tivity was given as the amount of SOD to cause
50% inhibition of the oxidation of adrenaline to
adrenochrome during 1 minute time frame.

Determination of reduced glutathione (GSH)

The measurement of reduced gluta-
thione (GSH) activity was carried out in accor-
dance with Ellman’s methodology (79). To 100
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ML of sample was added 1 mL of sulfosalicylic
acid. The solution was mixed thoroughly and
centrifuged at 4000 rmp for 50min.500 pL of
Ellman’s reagent was then added to 1mL of su-
pernatant the absorbance was read at a wave-
length of 412nm using water as blank. The GSH
activity was extrapolated from standard curve.

Determination of Glutathione Peroxidase
(GPx)

The activity of glutathione peroxidase
was assessed using the procedure reported by
Beutler (80). Each mixture for the reaction is
consisted of 1 mL of potassium phosphate buf-
fer, 200 uL of sodium azide, 400 uL of GSH, 20
L of H,0,, 100 L of tissue sample, 120 uL of
distilled water, and 200 pL of TCA. After a 5-min-
ute incubation at room temperature, the mixture
underwent centrifugation at 3000 rpm for 5 min-
utes. Subsequently, 1 mL of supernatant was
supplemented with 500 pL of 0.3 K,PHO, fol-
lowed by 500 uL of Ellman’s reagent. The new
mixture was then read at a wavelength of 412
nm using spectrophotometer and findings were
denoted as Units/mg protein.

Determination of glutathione S-transferase
(GST)

GST activity was assessed using
the method described by Habig et al (81). To
achieve this, 1 mL of buffer was added to 100
ML of the processed sample followed by 50 pL
of Reduced Glutathione (GSH) solution. 500
ML of 1- chloro 2, 4, - di nitrobenzene (CDNB)
solution was further added, and the mixture was
read spectrophotometrically at a wavelength of
480 nm and monitored every 60 secs for 150
secs. The results were reported as pmole/min/
mg protein.

Serum marker of inflammation

The assessment of nitrite levels, serv-
ing as an indicator of nitric oxide (NO) produc-
tion in the hippocampus of mice, was conduct-
ed following the procedure outlined by Olaleye
(82). The short-lived nature of nitric oxide (NO)
results in its rapid conversion into stable com-

pounds, namely nitrate (NO,), and nitrite (NO,)
(Ishola et al., 2018). Briefly, 100 uL of sample
was added to 1mL of Griess solution. The solu-
tion was mixed thoroughly and incubated at
25°C for 30min. The absorbance was read at
a wavelength of 542nm and nitite concentration
was extrapolated from NO standard curve.

Histopathology

For the histopathology study, brain
samples underwent a routine procedure of par-
affin embedding. Using a microtome (Microm
GmbH. D-6900 Heidelberg, West Germany),
5-mm thick sections were produced and stained
with Haematoxylin and Eosin (H&E) for ex-
amination of the general histology (83). Every
stained slide was visualized using a microscope
(Leica Microsystems, Wetzlar, Germany).

Statistical analysis

Utilizing Graphpad Prism 9.5.1, the
statistical assessment was conducted with a
confidence limit established at 95%. The rep-
resentation of data values was in the format
of mean * standard error of the mean (SEM).
Comparisons were made between the means of
individual groups and the control, while groups
receiving combined synergistic treatments were
compared against the group receiving sco-
polamine only. ANOVA (one- or two-way) was
applied to the data, and then the Tukey post
hoc multiple comparison test was performed.
At the five percentile (P < 0.05), differences in
means were deemed statistically significant.

Results
Acute toxicity test

After 14 days of post-administration of
H1 and H2 for the acute toxicity testing, there
were no obvious signs of toxicity at all doses
studied (300 mg/kg; 2000 mg/kg). No deaths
were also recorded. There was no evidence of
tremors, diarrhea, convulsions, or salivation.
Skin, nose, eyes, and fur were observed to
have normal morphological features, however,
strange behaviors like walking backward and
self-mutilation were not present. Furthermore,
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the body weight of the treated mice gradually
increased during the duration of the study.

Neurobehavioural tests
Morris water maze tasks

Results showed that the combined ex-
tract H1 and H2, as well as piracetam, reversed
scopolamine-induced cognitive impairment and
memory deficit in mice as indicated by a signif-
icant reduction [F (8, 173) = 25.69, P<0.0001]
in escape latency times throughout the trials
for acquisition conducted on days 1 to 3, an in-
crease [F (8, 62) = 10.52, P<0.0001] in crossing
rates of the target quadrant, and an increase [F
(8, 55) = 10.00, P<0.0001] in the length of time
in the quadrant of interest (Figure 2).
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Figure 2: Effects of combinations H1 and H2 on
the escape latency time (A), time spent in target
quadrant (B), number target quadrant crossing
(C) in Morris water maze. Each line in the plot
shows the average of 4 trials per day for each
animal (A). Values were presented as mean
SEM (n=10) through one-way ANOVA analysis.
Two-way ANOVA followed by Tukey’s multiple
comparisons test was used to analyze escape
latency time. Markers represent the differences
## p<0.01 when compared to control. **p<0.01,
***p < 0.001, ****p<0.001 when compared to
Scop group.

Y-maze test

A one-way ANOVA revealed that the
treatment of mice with the combined extracts
H1 and H2 improved the scopolamine-induced
cognitive deficits in mice by significantly aug-
menting [F (8, 59) = 4.151, P=0.0006] the spon-
taneous alternation percentage of mice during
the Y-maze task. However, the number of
arm entries did not significantly differ [F (8, 71)
= 0.9536, P=0.4790] between any of the groups
(Figure 3)

Y-Maze-% Alternations
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Figure 3: Effect of H1 and H2 on spontaneous
alternation percentage (A) and total number of
arm entries (B) in Y-maze. Values were pre-
sented as mean = standard error of the mean
(n=10). #p<0.05, #H#H#p<0.001 vs. Control group.
*p<0.05, **p<0.01 vs. scopolamine-treated
group. One-way ANOVA was applied to the
data, and then the Tukey post hoc multiple com-
parison test was performed

Biochemical analysis
Biomarkers of oxidative stress

Our findings showed statistically signif-
icant (p<0.05) in the level of the hippocampal
markers of oxidative stress ([F (8, 63) = 105.8,
P<0.0001] MDA level and [F (8, 63) = 10.26,
P<0.0016] of AChE activity in the groups treated
with the combined extracts H1 and H2 initially
increased by scopolamine. However, scopol-
amine-alone treated mice showed a decrease
in hippocampus NO level, with significant in-
creases [F (8, 63) = 15.43, P<0.0001] observed
in groups treated with H1 and H2 (Table 1).
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Table 1: Effects of H1 and H2 on hippocampus indices of oxidative stress
Parameter MDA H,0, AChE NO

2711

Control

2.6722 +0.515

3.5229 + 0.625

18.0015 + 3.637

25.6638 + 2.569

Scop (2 mg/kg)

5.2793 + 0.505#

4.5646 + 0.88*#

20.0016 £ 1.979

25.3672 £ 2.001

Scop + Pirac (200 mg/kg)

3.4039 +1.110™

3.9396 + 0.589

18.8587 +2.425

271473 £6.294

Scop + H1 (150 mg/kg)

0.8879 £ 0.025™

3.0021 £ 0.120™

17.1443 £ 2.969

53.0633 + 14.519™

Scop + H1 (100 mg/kg)

0.8223 £ 0.075™

2.6896 £ 0.170™"

15.4298 + 2.176"

50.0964 + 12.511™"

Scop + H1 (50 mg/kg)

0.9472 £ 0.017™

2.8979 £ 0.295™

16.7157 £ 3.534

46.5732+ 6.6145™

Scop + H2 (150 mg/kg)

0.8845 £ 0.112"™

2.7938 £ 0.496™"

19.4302 £ 1.979

44.3480 + 4.485™

Scop + H2 (100 mg/kg)

0.8875 £ 0.037""

3.2625 + 0.874™

14.7628 £ 4.125"

43.2354 + 5.503™

0.6667 + 0.066™"

2.8458 £ 0.313™

19.2873 £ 1.641

44.3480 + 6.453™

Scop + H2 (50 mg/kg)
Data were presented as Mean * Standard deviation (n= 4). #<0.05, ### P<0.01 vs. control group
and ***p<0.001 ****P<0.001 vs. scopolamine group using one-way ANOVA following by Tukey’s
multiple comparisons test. MDA: malondialdehyde (umol of MDA formed/mg protein); H,O,: hydro-
gen peroxide generation (umol/min/mg protein); AChE: acetylcholinesterase (pmol/min/mg pro-
tein); NO: nitric oxide (pmol/mg protein)

Antioxidant defense system

pocampus initially decreased in scopolamine in-
duction. However, GPx and GST activities were
found to increase in scopolamine-alone treated
mice with significant decreases observed in
mice post-treated with H1 and H2 (Table 2).

The treatment of mice with both com-
bined extracts H1 and H2 significantly increased
[F (8, 63) = 49.72, P<0.0001] SOD and [F (8,
63) = 123.3, P<0.0001] GSH level in mice hip-
Table 2: Effects of H1 and H2 on hippocampus antioxidant defense system

Parameter SOD GSH GPx GST

Control 6.6975 +0.7124 | 9.5319 + 0.903 6.6392 + 0.977 1.57 £ 0.839
Scop (2 mg/kg) 1.6864 + 1.185%## | 49574 + 0.752* 8.5428 + 0.795%# | 4,94 + 0.56%#
Scop + Pirac (200 mg/kg) 2.6823 +0.762 9.3191 £ 0.601™ |6.2491 +1.070™ | 0.815+0.101™"
Scop + H1 (150 mg/kg) 1.7120+ 0.759 | 37.1915+4.343™ | 3.0459 + 0.061™" | 2.01 £ 0.980™"
Scop + H1 (100 mg/kg) 5.1649 + 0.949"" | 41.7128 £ 9.701"" | 2.9985 + 0.271™" | 0.41 £ 0.05™"
Scop + H1 (50 mg/kg) 29709+ 0.493" |35.5957 £1.209™ | 3.1724 £+ 0.243™ | 0.882 £ 0.089™
Scop + H2 (150 mg/kg) 1.2896 + 0.037 38.2021 £4.159™ | 3.0107 £ 0.108™ | 1.43 £ 0.193™"
Scop + H2 (100 mg/kg) 2.0294 + 0.680 39.3723 £ 1.567"" | 2.9526 + 0.038™" | 0.947 £ 1.100™"
Scop + H2 (50 mg/kg) 2.4400 + 0.169 38.2553 £ 1.401™ | 2.8880 £ 0.142™" [ 1.72 £ 0.777"

Data were presented as mean *SEM (n= 4). #P<0.05 vs. control group and *P<0.05, **P<0.01,
****P<0.0001 vs. scopolamine group using one-way ANOVA following by Tukey’s multiple com-
parisons test. SOD: superoxide dismutase (units/mg protein); GSH: reduced glutathione (pmol/
mg protein); GPx: glutathione peroxidase (units/mg protein); GST: glutathione S-transferase (mmol
1-chloro-2,4-dinitrobenzene—GSH complex formed/min/mg protein)

demonstrated that scopolamine is associated
with deleterious effects as evidenced by multi-
ple apoptotic deaths of neurons and distortion
of neuronal morphology along with a reduction

Histopathology

Histopathological ~ examination  of
the brain hippocampus by photomicroscopy
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of neuronal cells in the cornus ammonis 1 (CA1)
region as compared to normal control group.
In addition, the dentate gyrus (DG) of the hip-
pocampus in the scopolamine group exhibited
multiple deformed neurons (Figure 4.1 A-F).
Regarding the piracetam-treated group, a nor-
mal histological structure of the brain hippocam-
pus was observed with few lightly stained nuclei
unlike the scopolamine group (Figure 4.1 D-I).

Control

Scop (2 mg/kg)

Scop + Pirac (200 mg/kg)

The treatment of the mice with the combinations
H1 and H2 at the doses 150 mg/kg for H1 and
100-150 mg/kg for H2 exhibited significant re-
versal of scopolamine-induced alterations in the
brain hippocampus and showed relatively nor-
mal cellular architecture in the CA1 region and
DG as shown in Figure 4.2 B-C and Figure 4.3
B-F.

Figure 4.1: Micrographs showing the longitudinal section of hippocampus in mice (H&E; Magnifica-
tion: A, D&G 10x, B, C, E, F, H, | 40x; Scale bars: A, D&G 100um, B, C, E, F, H, | 50pm).

(A) Lower magnification showing a normal hip-
pocampus. (B&C) Higher magnification show-
ing normal cornus ammonis 1 (CA1) region and
dentate gyrus of the hippocampus. (D) Lower
magnification showing the scopolamine-in-
duced mice hippocampus. (E) Scopolamine
treated mice revealed multiple apoptotic death
neurons and the neuronal morphology appear

distorted with reduced neuronal cells in the CA1
region. (F) The dentate gyrus in the scop group
exhibiting multiple deformed neurons (black ar-
row). (G) Lower magnification showing normal
hippocampus. (H&l) Piracetam treated mice
rvealed a normal CA1 region with few lightly
stained nuclei and a normal dentate gyrus.
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Scop + H1 (150 mg/kg)

Scap + H1 (100 mg/kg)

Seop + H1 (50 mg/kg)

Figure 4.2: Micrographs showing the longitudi-
nal section of hippocampus in mice (H&E; Mag-
nification: A, D&G 10x, B, C, E, F, H, 1 40x; Scale
bars: A, D&G 100um, B, C, E, F, H, 1 50um). (A)
Lower magnification of a normal hippocampus
showing restoration of the cellular architecture.
(B&C) Higher magnification showing relatively
normal cellular architecture in the cornus am-
monis 1 (CA1) region and dentate gyrus. (D&G)
Lower magnification showing relatively normal
hippocampus. (E, F, H&I) Higher mignfication,
few apoptotic death and distorted appearance
of neuronal cells were observed in the CA1 and
dentate gyrus.

Discussion

This study focused on assessing the
cognitive and antioxidative effects of combined
extracts from Spondias mombin, Spilanthes
filicaulis, and Piper guineense against scopol-
amine-induced memory impairment in mice.
These plants have been reported in literature
from ethnobotanical surveys conducted in some
parts of Southwest Nigeria as memory-enhanc-
ing and anti-aging agents (35,36). Also, each of
them has been screened either in vitro to inhib-
it the acetylcholinesterase activity or in vivo to
protect against neurochemical alterations and
oxidative stress in the scopolamine model of
cognitive dysfunction (30,37—41,43,44). After
extraction with distilled water, the concentrated
combined extracts H1 and H2 were subjected
to biological investigations.

Scop + H2 (150 mg/kg)

Scop + H2 (100 mg/kg)

Seop + H2 (50 mg/kg)

el

Figure 4.3: Micrographs showing the longitudi-
nal section of hippocampus in mice (H&E; Mag-
nification: A,D&G 10x, B,C,E,F,H,I 40x; Scale
bars: A,D&G 100um, B,C,E,F,H,I 50um). (A&D)
Lower magnification of a normal hippocampus
showing restoration of the histomorphology. (B,
C, E&F) Higher magnification showing normal
cornus ammonis 1 (CA1) region and dentate
gyrus of the hippocampus. (G) Lower magnifi-
cation showing relatively normal hippocampus.
(H&I) Higher magnification showing multiple
apoptotic death and distorted appearance of
neuronal cells were observed in the CA1 and
dentate gyrus.

First of all, to assess safety for human
use, the acute toxicity of the combined extracts
was investigated following the OECD guideline
(46). As per Al-Kadmi (47), to determine wheth-
er drugs and medicinal plant products are safe
for human consumption, a toxicological evalua-
tion must be done to determine toxicity and to
determine the dosage that can be used safely.
Throughout this study, doses of up to 2000 mg/
kg administered orally to female mice revealed
no apparent signs of toxicity. There were no
observable tremors, diarrhea, convulsions, or
abnormalities in behavior, maintaining normal
external features of skin, nose, eyes, and fur.
Unusual behaviors like walking backward or
self-mutilation were notably absent. Important-
ly, no deaths were reported at the 2000 mg/kg
dose, signifying an LD50 value exceeding 2000
mg/kg (48).
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Scopolamine, functioning as a musca-
rinic receptor antagonist, disrupts cholinergic
neuronal pathways and memory circuits, re-
sulting in significant deficits in learning, mem-
ory, and short-term memory (49). Widely used
model to simulate dementia-related conditions,
it induces cognitive deficits by hampering the
central cholinergic system crucial for learning
and memory 8,43-44. In this study, the Morris
water maze and Y-maze tests were employed
to assess the potential of the combined extracts
H1 and H2 in alleviating scopolamine-induced
memory impairment in mice, evaluating their im-
pact on memory function.

Various experiments have used the
Morris water maze test to investigate rodent
spatial learning and drug effects on cogni-
tive abilities (52,53). In this research, scopol-
amine-treated mice displayed cognitive impair-
ment, evidenced by increased escape latency,
reduced crossing rates in the target quadrant,
and decreased time spent there. Conversely,
the administration of synergistic combinations
notably improved these deficits across all dos-
es, decreasing escape latency and increasing
both quadrant crossings and time spent in the
target quadrant in comparison to the scopol-
amine group. These enhancements indicated
improved learning during acquisition trials and
better retention of the target quadrant area.
Consequently, the synergistic combination no-
tably ameliorated spatial learning and mem-
ory in scopolamine-treated mice, particularly
combinations H1 (50 mg/kg) and H2 (100 mg/
kg), which exhibited the most notable enhance-
ments in learning and memory.

Evaluating rodent spatial memory with
the Y maze task relies on their natural explo-
ration behavior (54). Scopolamine in the cur-
rent study impairs this, reducing spontaneous
alternation, a sign of spatial memory decline
(38,55-57). In contrast, treating mice with
the combined extracts H1 and H2 notably en-
hanced spatial working memory, evident in in-
creased spontaneous alterations compared to
scopolamine-treated mice. Importantly, locomo-

tor activity remained unaffected by scopolamine
or the combined extract treatments. These find-
ings indicate the potential of these synergistic
combinations to enhance short-term memory,
with H2 at 100 mg/kg showing the most promis-
ing results.

Multiple studies link oxidative stress
to neurodegenerative diseases (58-60). Con-
versely, research findings support that antioxi-
dants can prevent damage caused by oxidative
stress and enhance memory in animal models
of Alzheimer’s disease (61). This study revealed
that scopolamine- induced hippocampal oxida-
tive stress, evident in elevated MDA and H202
levels. Physiologically, hydrogen peroxide can
generate the highly toxic hydroxyl radical (OH-
) in cells via the Fe2+-dependent Fenton reac-
tion (62,63). Simultaneously, increased MDA
signifies polyunsaturated fatty acid membrane
damage due to lipid peroxidation (64,65). Con-
sequently, the surge in lipid oxidation products
likely arises from hydrogen peroxide and its re-
sultant compounds, contributing to the observed
hippocampal oxidative stress. In addition, sco-
polamine-treated mice exhibited elevated ox-
idative stress biomarkers alongside reduced
SOD activity and GSH content, coupled with
increased AChE activity, indicating that brain
tissues were exposed to oxidative stress. Ac-
cording to Oyagbemi et al (66), SOD acts as a
primary defense against tissue damage caused
by oxidation, while GSH plays a pivotal role in
cellular defense against oxidative injury(67).
Conversely, AChE regulates acetylcholine, a
neurotransmitter in synapses, disrupting its
function (68). As a consequence of this study,
treatment with the combined extracts H1 and
H2 significantly reversed these alterations, de-
creasing MDA and H202 levels while increasing
SOD activity and content of GSH, affirming their
antioxidant potential. This confirmed our previ-
ous findings where we demonstrated the in vitro
antioxidant capacity of the combined extracts
H1 and H2 (45).

Furthermore,Scopolamine-treated
mice exhibited notably increased hippocampal
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glutathione peroxidase (GPx) and glutathione
S-transferase (GST) activity, potentially indicat-
ing an adaptive response. Moreover, nitric ox-
ide’s role in learning and memory is well-docu-
mented in animal studies(69-71). Remarkably,
administering the combined extracts H1 and H2
to scopolamine-pretreated mice significantly
raised hippocampal NO levels, indicating their
potential to enhance spatial learning and mem-
ory. Additionally, the histopathological examina-
tion in this study displayed substantial cellular
repair in the hippocampus CA1 region and den-
tate gyrus in mice treated with H1 and H2 (Fig-
ure 4), supporting their efficacy in enhancing
learning and memory, consistent with biochemi-
cal markers.

In the rank of all the experiments and
assays carried out in this study, H1 consistent-
ly displayed remarkable potential for cognitive
improvement and oxidative stress reduction.
As determined using the Morris water maze,
the results highlighted its efficacy in enhancing
learning and memory. From the biochemical
analysis, it was evident that combination H1
significantly modulated key biomarkers. This in-
cluded a marked decrease in oxidative stress
markers (MDA and H202) and significant ele-
vations in the activity of SOD, GSH, and NO, all
of which signify enhanced antioxidant defens-
es. Furthermore, H1 was well-tolerated within
a therapeutic range and positively impacted
brain structure and cellular integrity based on
acute toxicity assessments and histopathologi-
cal examination of brain tissues. Thus, the com-
bined extract of S. mombin, S. filicaulis, and P.
guineense at a 2:2:4 ratio effectively enhanced
cognitive function, mitigated oxidative stress,
and reversed scopolamine-induced effects with-
in the hippocampal region of the brain

Conclusion

This study employed a comprehensive
screening strategy to identify the most effec-
tive synergistic combination derived from the
aqueous extracts of Spondias mombin leaves,
the whole plant of Spilanthes filicaulis, and Pip-

er guineense fruits. The formulated blend was
evaluated for its neuroprotective potential,
specifically its ability to enhance cognitive
performance, mitigate oxidative stress, and
counteract scopolamine-induced impairments
in the hippocampus of mouse brains.

Our findings provide compelling evi-
dence that the combined extracts of S. mom-
bin, S. filicaulis, and P. guineense exhibit
significant synergistic effects, contributing
to improved learning and memory functions.
These results underscore the therapeutic
promise of this phytochemical blend as a
natural intervention for cognitive enhancement
and neuroprotection.

However, while the observed outcomes
are promising, further investigations are essen-
tial to fully understand the molecular and bio-
chemical mechanisms driving the synergistic in-
teractions among the plant constituents. Future
studies should also explore dose optimization,
long-term safety, and efficacy in diverse animal
models and, eventually, in human clinical trials.
Such research will be critical in validating the
practical applications of this combination in the
development of novel treatments for neurode-
generative disorders and cognitive decline.
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