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Abstract

	 Memory challenges and cognitive de-
cline, linked to neurodegenerative illnesses, 
continue to rise worldwide without effective 
remedies. Traditional medicinal plants have 
shown promise in mitigating these conditions. 
This study evaluated synergy-based aqueous 
combinations of Spondias mombin, Spilanthes 
filicaulis, and Piper guineense for learning and 
memory enhancement. Two formulations, H1 
(ratio 2:2:4) and H2 (ratio 2:2:2), were prepared, 
administered, and assessed using the Morris 
Water Maze and Y-maze tests, alongside bio-
chemical analyses of oxidative stress markers 
(MDA, H₂O₂, SOD, GSH, GPx, GST), nitric 
oxide levels, and acetylcholinesterase activity. 
Histopathological examination of the hippocam-
pus was also performed. Results showed that 
scopolamine impaired learning and memory, el-
evated oxidative stress, and caused hippocam-
pal damage. However, treatment with the com-
bined extracts H1 and H2 significantly improved 
spatial learning and working memory compared 

to scopolamine controls, as evidenced by re-
duced escape latency and increased spon-
taneous alternation. Additionally, H1 and H2 
lowered oxidative stress markers, restored 
antioxidant enzyme balance, reduced AChE 
activity, and ameliorated neuronal disruptions. 
Among the two formulations, H1 consistent-
ly demonstrated superior neuroprotective and 
antioxidant effects across behavioral and bio-
chemical assays. These findings suggest that 
synergy-based combinations of these plants, 
particularly H1, may offer a promising approach 
for memory enhancement and warrant further 
investigation for development into an herbal 
therapeutic product.

Keywords: Medicinal plants, Synergistic com-
bination treatment, Neurodegenerative disor-
ders, Antioxidant, Acetylcholinesterase activity.

Introduction

	 The aging demographic contributes to 
the escalating prevalence of memory impair-
ment and dementia worldwide (1). Alzheimer’s 
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disease (AD), the primary cause of dementia, 
progressively impairs intellectual functions cen-
tered in the Wernicke areas, affecting learning, 
memory, language, and personality(2). Elderly 
individuals are primarily affected by this degen-
erative neurological ailment, resulting in a de-
cline in cognitive abilities and memory function 
(3,4). Contrary to normal aging, AD is charac-
terized by its distinct pathological nature (5). 
According to Alzheimer’s Disease International 
(ADI), global dementia diagnoses surpass 9.9 
million yearly, with a startling frequency of one 
diagnosis every 3.2 seconds(6). Furthermore, 
the latest data from  the World Health Organiza-
tion (7), positions dementia as the world’s sev-
enth leading cause of death, based on the 2019 
Global health estimates released in December 
2020.

	 Alzheimer’s disease (AD) risk factors 
encompass genetic elements like the ApoE4 
gene and environmental influences such as 
age, depression, and metabolic conditions 
like diabetes and hyperlipidemia(8,9)which is 
characterized by a decline in thinking and in-
dependence in personal daily activities. AD is 
considered a multifactorial disease: two main 
hypotheses were proposed as a cause for AD, 
cholinergic and amyloid hypotheses. Additional-
ly, several risk factors such as increasing age, 
genetic factors, head injuries, vascular diseas-
es, infections, and environmental factors play a 
role in the disease. Currently, there are only two 
classes of approved drugs to treat AD, including 
inhibitors to cholinesterase enzyme and antag-
onists to N-methyl d-aspartate (NMDA. Recent 
research highlights multiple contributors to cog-
nitive function impairment, encompassing chem-
icals, genetic associations, medications, disor-
ders, and the natural aging process (10,11). In 
addition, studies indicate associations between 
AD pathologies and oxidative stress, inflamma-
tion, hyperhomocysteinemia (10), loss of specif-
ic neuronal populations, reduced synaptophysin 
immunoreactivity, and depletion of cholinergic 
fibers (12), Although, anticholinesterase drugs 
are used for neurodegenerative diseases, their 

limitations; such as low bioavailability, hepato-
toxicity, and short action duration; have led to 
intensified pharmaceutical research focusing on 
natural acetylcholinesterase (AChE) inhibitors 
from plants with fewer side effects (10,13–15). 
This pursuit aims to address cholinergic deficits 
and enhance neurotransmission, potentially 
halting or slowing disease progression. A com-
prehensive, multi-targeted approach appears 
essential in effectively addressing memory-re-
lated disorders.

	 Traditional African medicine relies on 
numerous medicinal plants for treating intel-
lectual disorders, including neurodegenerative 
diseases (1). These plants contain active com-
pounds known as potent acetylcholinesterase 
(AChE) inhibitors (16), essential for slow-acting 
chemical communication within the nervous and 
cholinergic systems (17). Additionally, the com-
bination of active compounds within herbs can 
produce synergistic pharmacological effects, 
as demonstrated by studies like Mak et al (3), 
which highlighted the potential of combining 
alkaloids from Coptidis rhizoma and Corydalis 
rhizome. Similarly, Khan et al (10) reported the 
synergistic combination of Withania somnifera 
and Myristica fragrans effectively inhibiting anti-
cholinesterase activity.

	 Spondias mombin, also known as hog 
plum, belongs to the Anacardiaceae family and 
is originally native to the tropical regions of the 
Americas. However, it has spread widely and is 
now found across many parts of Asia and Afri-
ca (18). Traditionally, various parts of the plant, 
including its stem bark, leaves, and roots, have 
been used in folk medicine to address a range 
of health conditions (19). cientific studies have 
highlighted its antimicrobial (20), antioxidant 
(19,21), and antidiabetic properties (22), sup-
porting its long-standing use in natural healing 
practices.

	 Spilanthes filicaulis, commonly 
called Creeping Spot Flower or African Cress, is 
widely distributed across tropical and subtrop-
ical regions of the world, including Africa, the 
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Americas, Borneo, India, Sri Lanka, and parts 
of Asia (23). It is an annual plant from the Aster-
aceae family, characterized by creeping growth 
and prostrate stems that root at the nodes (24). 
In Babungo, located in the  Northwest Region 
of Cameroon, the entire plant is traditionally 
used to treat ailments such as malaria, gastritis, 
toothaches, and stomachaches (25). Research 
has identified several biological activities asso-
ciated with this species, notably its antimalari-
al(26), antidiabetic(27), antimicrobial (28), anti-
fungal (29), and  antioxidant activities (24,30).  

	 Piper guineense, widely known as black 
pepper, belongs to the Piperaceae family and is 
distributed across Africa and various other re-
gions around the world, primarily for its culinary 
importance (31). The plant holds significant val-
ue in traditional medicine, with its leaves tradi-
tionally used to help regulate menstrual cycles 
and support the treatment of female infertility 
(32). Scientific studies have also highlighted 
its  anti-inflammatory, anticonvulsant, and anti-
oxidant properties (33,34). 

	 Additionally, an ethnobotanical survey 
conducted in Southwest Nigeria highlighted the 
tree plants for their traditional use as memory 
enhancers and anti-aging remedies (35,36). 
Also, each of them has been screened either 
in vitro to inhibit the acetylcholinesterase activ-
ity or in vivo to protect against neurochemical 
alterations and oxidative stress in the scopol-
amine model of cognitive dysfunction (30,37–
44). Moreover, Hounsou et al (45) demonstrat-
ed the promising in vitro antioxidant potential of 
the combined extract from these three plants.  
The current study aims at developing a syn-
ergy-based combined extract of these plants 
in different ratios for learning and memory en-
hancement to suggest the ratio suitable for 
herbal product formulation based on favorable 
pharmacological effects and toxicological pro-
files.

Plant collection, processing and extraction

	 Samples of S. mombin leaves harvest-
ed from Ondo Road, Akure; entire S. filicaulis 

plants collected from Ilu abo, Ondo State; and 
dried P. guineense fruits sourced from Bode 
market, Ibadan, Oyo State, underwent botani-
cal identification and authentication at the Her-
barium of the Department of Botany, Universi-
ty of Ibadan, Nigeria. The voucher specimens 
are UIH-23260 (Spondias mombin), UIH-24241 
(Spilanthes filicaulis), and UIH-23258 (Piper 
guineense). After air-drying and pulverizing the 
plant materials, the powdered samples were 
combined. Combination H1 was prepared at a 
2:2:4 ratio, while combination H2 utilized a 2:2:2 
ratio. These mixtures were macerated with dis-
tilled water for 72 hours, with stirring every 24 
hours. The filtrate of each combination was 
freeze-dried, and up until their use, concentrat-
ed extracts were kept refrigerated at 4°C.

Procurement, housing, and acclimatization 
of animals

	 Ten-week-old male and nulliparous fe-
male albino mice (weighing 18-29 g) were pro-
cured from the Experimental Animal Unit, Uni-
versity of Ibadan, Nigeria. The selection of the 
animals was done following the Animal Care and 
Use Research Ethics Committee (ACUREC), 
University of Ibadan, Nigeria’s approval under 
the protocol number UI-ACUREC/061-0723/11. 
Mice, confirmed healthy, were housed in poly-
propylene cages (10 males or 5 females per 
cage) with wood shavings, and provided a stan-
dard pellet diet, and ad-libitum supply of water 
for two weeks before experimentation.

Acute toxicity and behavioural changes

	 Following the Organization for Eco-
nomic Co-operation and Development guideline 
(46), twenty fasted female mice were adminis-
tered oral doses of combined extracts H1 and 
H2 at 300 mg/kg and 2,000 mg/kg to determine 
their acute toxicity. Post-extract administration, 
mice were monitored immediately and at 30, 60 
minutes, 4 hours, and 24 hours for signs of tox-
icity. Daily checks over 14 days included mon-
itoring for salivation, defecation, convulsions, 
skin/fur changes, eye/mucous membrane alter-
ations, respiratory changes, behavior patterns. 
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Also, weight loss was monitored every three 
days. 

Experimental design and treatment

	 For the experiment, albino mice were 
randomly divided into nine groups, each con-
sisting of 10 mice. Following the period of ac-
climatization, all animals except those in the 
normal control group (Group 1) were pretreated 
intraperitoneally with 2 mg/kg of scopolamine 
for three consecutive days. Starting from day 4 
post-scopolamine induction, Group 1 received 
oral distilled water (0.2 mL/mouse), Group 2 also 
received oral distilled water and was assigned 
as the negative control group, while Group 3 
was given piracetam orally (200mg/kg) to serve 
as the positive control. Top of FormGroups 4-6 
received oral doses of combined extract H1 
(at 150 mg/kg, 100 mg/kg, and 50 mg/kg, re-
spectively), and Groups 7-9 received combined 
extract H2 (at 150 mg/kg, 100 mg/kg, and 50 
mg/kg, respectively). Ten days post-administra-
tion, mice underwent three days of Morris water 
maze training followed by a reference memory 
test (probe test) on the 14th day, and finally, a 
Y-Maze test. Dosing continued from the 10th to 
the 14th day for assessment. The experimental 
procedure is described in Figure1.

Figure 1: Scheme of the experimental proce-
dure.

Neurobehavioural test

Morris water maze test

	 Applying  the  technique described by 
Khan et al (10), the Morris water maze task was 
performed to assess mice’s spatial learning 

in a sizable setting. The maze was made of a 
circular tank (125 cm diameter, 34 cm height) 
held water (15 cm height), made opaque by the 
addition of evaporated milk. A Tracking system 
(ANY-maze 7.20), connected to a camera was 
used to facilitate the recording of the swimming 
pattern of mice. The tank was divided into four 
quadrants, hiding a submerged platform (14 cm 
height, 1 cm below water level) in one quad-
rant. Over four days, comprising three training 
days and one probe trial, mice underwent four 
of 120-second trials each day from different 
starting positions. The escape latency (i.e., the 
time taken by the mice to locate the hidden plat-
form) was recorded. Mice that were unable to 
locate the platform within a 2-minute timeframe 
were subsequently positioned on it for a dura-
tion of 15 seconds. Up to 15–20 minutes gap 
separated the trial sessions. On the fourth day, 
the hidden platform was taken away, and during 
a 120-second trial, entries over the previous 
platform location and time spent in the target 
quadrant were recorded to evaluate memory re-
tention and spatial recall. This methodology al-
lowed for efficient assessment of mice’s spatial 
navigation abilities without manual data record-
ing, ensuring a comprehensive understanding 
of their learning capabilities in the maze envi-
ronment.

Y- Maze test

	 In assessing short-term memory in 
mice via the Y maze test as described by Krae-
uter et al (54), a wooden maze with three arms 
A, B, and C, oriented at an angle of 120 ℃ to 
each other was used. Mice were positioned in 
the maze center and given 5 minutes to explore 
the arms, and their arm entries and alternations 
were recorded. Cleaning of the maze with 70% 
ethanol before and between tests was performed 
to maintain consistency of conditions. An entry 
was noted when the animal went into an arm 
with all its paws, while an alternation occurred if 
the mouse consecutively entered all three arms 
in a sequence (e.g., ABC, CAB). This rigorous 
protocol ensured standardized testing condi-
tions, enabling accurate assessment of mice’s 
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short-term memory performance. The total arm 
entries and proportion of spontaneous alterna-
tions were determined by applying the equation 
below:

%Alternation = (Number of Alternations / 
[Total number of arm entries – 2]) x 100

Tissue Processing

	 On the final day, euthanasia via cervi-
cal dislocation on ice was performed on the an-
imals. From each group of 10 mice, the brains 
of 4 were dissected entirely, with the hippocam-
pus sectioned for biochemical tests. Similarly, 
brains from 4 mice in each group underwent 
preservation in phosphate formalin buffer after 
cardiac perfusion using normal saline and 10% 
phosphate formalin buffer for histopathology 
as previously outlined by Olopade et al (72). 
The isolated hippocampus tissues were rinsed, 
weighed, homogenized in ice-cold homogeniz-
ing buffer (0.1 M phosphate buffer, pH 7.4), then 
centrifuged at −4 °C (12,000 rpm for 10 min-
utes). The resulting post-mitochondrial fraction 
(PMF) was collected for biochemical parameter 
assessments according to Oyagbemi et al (73).

Biochemical assays
Biomarkers of oxidative stress
Estimation of MDA level

	 Hippocampal lipid peroxidation was 
carried out by measuring thiobarbituric acid re-
active products using the procedure reported 
by Varshney and Kale (74). Briefly, 200 μL of 
supernatant was added to Tris-KCl buffer (800 
μL, 0.15M, pH 7.4), Trichloroacetic acid (500 
μL, 30%), and Thiobarituric acid (500 μL, 0.7%). 
The solution was mixed thoroughly and heated 
in water bath at 80°C for 45 minutes. It was then 
cooled and centrifuged at 400 rpm for 10 min-
utes. The absorbance of the supernatant was 
read at a wavelength of 532nm, and findings 
were denoted as Units/mg protein.

Estimation of H2O2 level

	 The hydrogen peroxide (H2O2) genera-
tion was determined according to the procedure 

reported by Wolff (75). Basically, 1mL of buffer, 
ammonium ferrous sulphate (100 μL), sorbitol 
(40 μL), xylenol orange (40 μL), H2SO4 (20 μL) 
were added to 40 μL of sample (supernatant). 
The solution was mixed thoroughly and incubat-
ed at 25°C for 30min. The absorbance was read 
at a wavelength of 560nm and H2O2 generated 
was extrapolated from H2O2 standard curve.

Measurement of acetylcholinesterase 
(AChE) activity 

	 The acetylcholinesterase activity was 
assayed spectrophotometrically in mice’s hip-
pocampus as reported by Turner et al (76). 
Then, a reaction mixture containing 1 mL of 
buffered Ellman’s reagent and 300 μL of acet-
ylthiocholine iodide solution was added 200 μL 
of supernatant. The absorbance was then mon-
itored at 412 nm over a period of 3 minutes at 
30 seconds interval using UV-Vis spectropho-
tometer. Activities were expressed as mmole of 
substrate/min/mg protein.

Hippocampal antioxidant defense system
Determination of superoxide dismutase 
(SOD) activity

	 Superoxide dismutase (SOD) activity 
in homogenates was assessed based on the 
procedure of Fridovich (77) with minor modi-
fications by Oyagbemi et al (78). An aliquot of 
100 µL of supernatant was added to carbon-
ate buffer (20mL, pH 10.2) to equilibrate in the 
spectrophotometer and the reaction was started 
by the addition of freshly prepaered adrenaline 
(300 µL, 0.3mM) to the mixture wich was quickly 
mixed by inversion. The increase in absorbance 
at a wavelength of 480nm was monitored every 
30 seconds for 150 seconds. 1 unit of SOD ac-
tivity was given as the amount of SOD to cause 
50% inhibition of the oxidation of adrenaline to 
adrenochrome during 1 minute time frame.

Determination of reduced glutathione (GSH)

	 The measurement of reduced gluta-
thione (GSH) activity was carried out in accor-
dance with Ellman’s methodology (79). To 100 



Current Trends in Biotechnology and Pharmacy
Vol. 20(1) 2704-2722 January 2026, ISSN 0973-8916 (Print), 2230-7303 (Online)
DOI: 10.5530/ctbp.2026.1.1

Development and assessment of a synergy-based combined extracts of Spondias mombin L., 
Spilanthes filicaulis (SCHUMACH. & THONN.) C.D. ADAMS and Piper 

2709

μL of sample was added 1 mL of sulfosalicylic 
acid. The solution was mixed thoroughly and 
centrifuged at 4000 rmp for 50min.500 μL of 
Ellman’s reagent was then added to 1mL of su-
pernatant the absorbance was read at a wave-
length of 412nm using water as blank. The GSH 
activity was extrapolated from standard curve.

Determination of Glutathione Peroxidase 
(GPx)

	 The activity of glutathione peroxidase 
was assessed using the procedure reported  by 
Beutler (80). Each mixture for the reaction is 
consisted of 1 mL of potassium phosphate buf-
fer, 200 μL of sodium azide, 400 μL of GSH, 20 
μL of H₂O₂, 100 μL of tissue sample, 120 μL of 
distilled water, and 200 μL of TCA. After a 5-min-
ute incubation at room temperature, the mixture 
underwent centrifugation at 3000 rpm for 5 min-
utes. Subsequently, 1 mL of supernatant was 
supplemented with 500 μL of 0.3 K2PHO₄ fol-
lowed by 500 μL of Ellman’s reagent. The new 
mixture was then read at a wavelength of 412 
nm using spectrophotometer and findings were 
denoted as Units/mg protein.

Determination of glutathione S-transferase 
(GST)

	 GST activity was assessed using 
the method described by Habig et al (81). To 
achieve this, 1 mL of buffer was added to 100 
μL of the processed sample followed by 50 μL 
of Reduced Glutathione (GSH) solution. 500 
μL of 1- chloro 2, 4, - di nitrobenzene (CDNB) 
solution was further added, and the mixture was 
read spectrophotometrically at a wavelength of 
480 nm and monitored every 60 secs for 150 
secs. The results were reported as μmole/min/
mg protein.

Serum marker of inflammation

	 The assessment of nitrite levels, serv-
ing as an indicator of nitric oxide (NO) produc-
tion in the hippocampus of mice, was conduct-
ed following the procedure outlined by Olaleye 
(82). The short-lived nature of nitric oxide (NO) 
results in its rapid conversion into stable com-

pounds, namely nitrate (NO3), and nitrite (NO2
-) 

(Ishola et al., 2018). Briefly, 100 μL of sample 
was added to 1mL of Griess solution. The solu-
tion was mixed thoroughly and incubated at 
25°C for 30min. The absorbance was read at 
a wavelength of 542nm and nitite concentration 
was extrapolated from NO standard curve.

Histopathology

	 For the histopathology study, brain 
samples underwent a routine procedure of par-
affin embedding. Using a microtome (Microm 
GmbH. D-6900 Heidelberg, West Germany), 
5-mm thick sections were produced and stained 
with Haematoxylin and Eosin (H&E) for ex-
amination of the general histology (83). Every 
stained slide was visualized using a microscope 
(Leica Microsystems, Wetzlar, Germany).

Statistical analysis

	 Utilizing Graphpad Prism 9.5.1, the 
statistical assessment was conducted with a 
confidence limit established at 95%. The rep-
resentation of data values was in the format 
of mean ± standard error of the mean (SEM). 
Comparisons were made between the means of 
individual groups and the control, while groups 
receiving combined synergistic treatments were 
compared against the group receiving sco-
polamine only. ANOVA  (one-  or  two-way) was 
applied to the data, and then the  Tukey post 
hoc multiple comparison  test was performed. 
At the five percentile (P ≤ 0.05), differences in 
means were deemed statistically significant. 

Results 
Acute toxicity test

	 After 14 days of post-administration of 
H1 and H2 for the acute toxicity testing, there 
were no obvious signs of toxicity at all doses 
studied (300 mg/kg; 2000 mg/kg). No deaths 
were also recorded. There was no evidence of 
tremors, diarrhea, convulsions, or salivation. 
Skin, nose, eyes, and fur were observed to 
have normal morphological features, however, 
strange behaviors like walking backward and 
self-mutilation were not present. Furthermore, 
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the body weight of the treated mice gradually 
increased during the duration of the study. 

Neurobehavioural tests
Morris water maze tasks

 Results showed that the combined ex-
tract H1 and H2, as well as piracetam, reversed 
scopolamine-induced cognitive impairment and 
memory defi cit in mice as indicated by a signif-
icant reduction [F (8, 173) = 25.69, P<0.0001] 
in escape latency times throughout the trials 
for acquisition conducted on days 1 to 3, an in-
crease [F (8, 62) = 10.52, P<0.0001] in crossing 
rates of the target quadrant, and an increase [F 
(8, 55) = 10.00, P<0.0001] in the length of time 
in the quadrant of interest (Figure 2).

Figure 2: Eff ects of combinations H1 and H2 on 
the escape latency time (A), time spent in target 
quadrant (B), number target quadrant crossing 
(C) in Morris water maze. Each line in the plot 
shows the average of 4 trials per day for each 
animal (A). Values were presented as mean ± 
SEM (n=10) through one-way ANOVA analysis. 
Two-way ANOVA followed by Tukey’s multiple 
comparisons test was used to analyze escape 
latency time. Markers represent the diff erences 
## p<0.01 when compared to control. **p<0.01, 
***p < 0.001, ****p<0.001 when compared to 
Scop group.

Y-maze test

 A one-way ANOVA revealed that the 
treatment of mice with the combined extracts 
H1 and H2 improved the scopolamine-induced 
cognitive defi cits in mice by signifi cantly aug-
menting [F (8, 59) = 4.151, P=0.0006] the spon-
taneous alternation percentage of mice during 
the Y-maze task. However, the number of 
arm entries did not signifi cantly diff er [F (8, 71) 
= 0.9536, P=0.4790] between any of the groups 
(Figure 3)

Figure 3: Eff ect of H1 and H2 on spontaneous 
alternation percentage (A) and total number of 
arm entries (B) in Y-maze. Values were pre-
sented as mean ± standard error of the mean 
(n=10). #p<0.05, ###p<0.001 vs. Control group. 
*p<0.05, **p<0.01 vs. scopolamine-treated 
group. One-way ANOVA was applied to the 
data, and then the Tukey post hoc multiple com-
parison test was performed

Biochemical analysis
Biomarkers of oxidative stress

 Our fi ndings showed statistically signif-
icant (p<0.05) in the level of the hippocampal 
markers of oxidative stress ([F (8, 63) = 105.8, 
P<0.0001] MDA level and [F (8, 63) = 10.26, 
P<0.0016] of AChE activity in the groups treated 
with the combined extracts H1 and H2 initially 
increased by scopolamine. However, scopol-
amine-alone treated mice showed a decrease 
in hippocampus NO level, with signifi cant in-
creases [F (8, 63) = 15.43, P<0.0001] observed 
in groups treated with H1 and H2 (Table 1). 
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Table 1: Effects of H1 and H2 on hippocampus indices of oxidative stress
Parameter MDA H2O2 AChE NO

Control 2.6722 ± 0.515 3.5229 ± 0.625 18.0015 ± 3.637 25.6638 ± 2.569
Scop (2 mg/kg) 5.2793 ± 0.505#### 4.5646 ± 0.884# 20.0016 ± 1.979 25.3672 ± 2.001
Scop + Pirac (200 mg/kg) 3.4039  ± 1.110**** 3.9396 ± 0.589 18.8587 ± 2.425 27.1473 ± 6.294

Scop + H1 (150 mg/kg) 0.8879 ± 0.025**** 3.0021 ± 0.120**** 17.1443 ± 2.969 53.0633 ± 14.519****

Scop + H1 (100 mg/kg) 0.8223 ± 0.075**** 2.6896 ± 0.170**** 15.4298 ± 2.176* 50.0964 ± 12.511****

Scop + H1 (50 mg/kg) 0.9472 ± 0.017**** 2.8979 ± 0.295**** 16.7157 ± 3.534 46.5732± 6.6145****

Scop + H2 (150 mg/kg) 0.8845 ± 0.112**** 2.7938 ± 0.496**** 19.4302 ± 1.979 44.3480 ± 4.485***

Scop + H2 (100 mg/kg) 0.8875 ± 0.037**** 3.2625 ± 0.874*** 14.7628 ± 4.125** 43.2354 ± 5.503***

Scop + H2 (50 mg/kg) 0.6667 ± 0.066**** 2.8458 ± 0.313**** 19.2873 ± 1.641 44.3480 ± 6.453***

Data were presented as Mean ± Standard deviation (n= 4). #<0.05, ### P<0.01 vs. control group 
and ***p<0.001 ****P<0.001 vs. scopolamine group using one-way ANOVA following by Tukey’s 
multiple comparisons test. MDA: malondialdehyde (μmol of MDA formed/mg protein); H2O2: hydro-
gen peroxide generation (μmol/min/mg protein); AChE: acetylcholinesterase (μmol/min/mg pro-
tein); NO: nitric oxide (μmol/mg protein)
Antioxidant defense system

	 The treatment of mice with both com-
bined extracts H1 and H2 significantly increased 
[F (8, 63) = 49.72, P<0.0001] SOD and [F (8, 
63) = 123.3, P<0.0001] GSH level in mice hip-

pocampus initially decreased in scopolamine in-
duction. However, GPx and GST activities were 
found to increase in scopolamine-alone treated 
mice with significant decreases observed in 
mice post-treated with H1 and H2 (Table 2).

Table 2: Effects of H1 and H2 on hippocampus antioxidant defense system
Parameter SOD GSH GPx GST
Control 6.6975 ±0.7124 9.5319 ±  0.903 6.6392 ± 0.977 1.57 ± 0.839
Scop (2 mg/kg) 1.6864 ± 1.185#### 4.9574 ± 0.752# 8.5428 ± 0.795#### 4.94 ± 0.56####

Scop + Pirac (200 mg/kg) 2.6823 ± 0.762 9.3191 ± 0.601**** 6.2491 ± 1.070**** 0.815 ± 0.101****

Scop + H1 (150 mg/kg) 1.7120 ±  0.759 37.1915 ± 4.343**** 3.0459 ± 0.061**** 2.01 ± 0.980****

Scop + H1 (100 mg/kg) 5.1649 ±  0.949**** 41.7128 ± 9.701**** 2.9985 ± 0.271**** 0.41 ± 0.05****

Scop + H1 (50 mg/kg) 2.9709 ±  0.493* 35.5957 ± 1.209**** 3.1724 ± 0.243**** 0.882 ± 0.089****

Scop + H2 (150 mg/kg) 1.2896 ± 0.037 38.2021 ± 4.159**** 3.0107 ± 0.108**** 1.43 ± 0.193****

Scop + H2 (100 mg/kg) 2.0294 ± 0.680 39.3723 ± 1.567**** 2.9526 ± 0.038**** 0.947 ± 1.100****

Scop + H2 (50 mg/kg) 2.4400 ± 0.169 38.2553 ± 1.401**** 2.8880 ± 0.142**** 1.72 ± 0.77****

Data were presented as mean ±SEM (n= 4). #P<0.05 vs. control group and *P<0.05, **P<0.01, 
****P<0.0001 vs. scopolamine group using one-way ANOVA following by Tukey’s multiple com-
parisons test. SOD: superoxide dismutase (units/mg protein); GSH: reduced glutathione (μmol/
mg protein); GPx: glutathione peroxidase (units/mg protein); GST: glutathione S-transferase (mmol 
1-chloro-2,4-dinitrobenzene–GSH complex formed/min/mg protein)
Histopathology

	 Histopathological examination of 
the brain hippocampus by photomicroscopy 

demonstrated that scopolamine is associated 
with deleterious effects as evidenced by multi-
ple apoptotic deaths of neurons and distortion 
of neuronal morphology along with a reduction 
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of neuronal cells in the cornus ammonis 1 (CA1) 
region as compared to normal control group. 
In addition, the dentate gyrus (DG) of the hip-
pocampus in the scopolamine group exhibited 
multiple deformed neurons (Figure 4.1 A-F). 
Regarding the piracetam-treated group, a nor-
mal histological structure of the brain hippocam-
pus was observed with few lightly stained nuclei 
unlike the scopolamine group (Figure 4.1 D-I). 

The treatment of the mice with the combinations 
H1 and H2 at the doses 150 mg/kg for H1 and 
100-150 mg/kg for H2 exhibited significant re-
versal of scopolamine-induced alterations in the 
brain hippocampus and showed relatively nor-
mal cellular architecture in the CA1 region and 
DG as shown in Figure 4.2 B-C and Figure 4.3 
B-F.

Figure 4.1: Micrographs showing the longitudinal section of hippocampus in mice (H&E; Magnifica-
tion: A, D&G 10x, B, C, E, F, H, I 40x; Scale bars: A, D&G 100µm, B, C, E, F, H, I 50µm).

(A) Lower magnification showing a normal hip-
pocampus. (B&C) Higher magnification show-
ing normal cornus ammonis 1 (CA1) region and 
dentate gyrus of the hippocampus. (D) Lower 
magnification showing the scopolamine-in-
duced mice hippocampus. (E) Scopolamine 
treated mice revealed multiple apoptotic death 
neurons and the neuronal morphology appear 

distorted with reduced neuronal cells in the CA1 
region. (F) The dentate gyrus in the scop group 
exhibiting multiple deformed neurons (black ar-
row). (G) Lower magnification showing normal 
hippocampus. (H&I) Piracetam treated mice 
rvealed a normal CA1 region with few lightly 
stained nuclei and a normal dentate gyrus. 
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Figure 4.2: Micrographs showing the longitudi-
nal section of hippocampus in mice (H&E; Mag-
nification: A, D&G 10x, B, C, E, F, H, I 40x; Scale 
bars: A, D&G 100µm, B, C, E, F, H, I 50µm). (A) 
Lower magnification of a normal hippocampus 
showing restoration of the cellular architecture. 
(B&C) Higher magnification showing relatively 
normal cellular architecture in the cornus am-
monis 1 (CA1) region and dentate gyrus. (D&G) 
Lower magnification showing relatively normal 
hippocampus. (E, F, H&I) Higher mignfication, 
few apoptotic death and distorted appearance 
of neuronal cells were observed in the CA1 and 
dentate gyrus.

Figure 4.3: Micrographs showing the longitudi-
nal section of hippocampus in mice (H&E; Mag-
nification: A,D&G 10x, B,C,E,F,H,I 40x; Scale 
bars: A,D&G 100µm, B,C,E,F,H,I 50µm). (A&D) 
Lower magnification of a normal hippocampus 
showing restoration of the histomorphology. (B, 
C, E&F) Higher magnification showing normal 
cornus ammonis 1 (CA1) region and dentate 
gyrus of the hippocampus. (G) Lower magnifi-
cation showing relatively normal hippocampus. 
(H&I) Higher magnification showing multiple 
apoptotic death and distorted appearance of 
neuronal cells were observed in the CA1 and 
dentate gyrus.

Discussion
	 This study focused on assessing the 
cognitive and antioxidative effects of combined 
extracts from Spondias mombin, Spilanthes 
filicaulis, and Piper guineense against scopol-
amine-induced memory impairment in mice. 
These plants have been reported in literature 
from ethnobotanical surveys conducted in some 
parts of Southwest Nigeria as memory-enhanc-
ing and anti-aging agents (35,36). Also, each of 
them has been screened either in vitro to inhib-
it the acetylcholinesterase activity or in vivo to 
protect against neurochemical alterations and 
oxidative stress in the scopolamine model of 
cognitive dysfunction (30,37–41,43,44). After 
extraction with distilled water, the concentrated 
combined extracts H1 and H2 were subjected 
to biological investigations. 

	 First of all, to assess safety for human 
use, the acute toxicity of the combined extracts 
was investigated following the OECD guideline 
(46). As per Al-Kadmi (47), to determine wheth-
er drugs and medicinal plant products are safe 
for human consumption, a toxicological evalua-
tion must be done to determine toxicity and to 
determine the dosage that can be used safely. 
Throughout this study, doses of up to 2000 mg/
kg administered orally to female mice revealed 
no apparent signs of toxicity. There were no 
observable tremors, diarrhea, convulsions, or 
abnormalities in behavior, maintaining normal 
external features of skin, nose, eyes, and fur. 
Unusual behaviors like walking backward or 
self-mutilation were notably absent. Important-
ly, no deaths were reported at the 2000 mg/kg 
dose, signifying an LD50 value exceeding 2000 
mg/kg (48).
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	 Scopolamine, functioning as a musca-
rinic receptor antagonist, disrupts cholinergic 
neuronal pathways and memory circuits, re-
sulting in significant deficits in learning, mem-
ory, and short-term memory (49). Widely used 
model to simulate dementia-related conditions, 
it induces cognitive deficits by hampering the 
central cholinergic system crucial for learning 
and memory 8,43-44. In this study, the Morris 
water maze and Y-maze tests were employed 
to assess the potential of the combined extracts 
H1 and H2 in alleviating scopolamine-induced 
memory impairment in mice, evaluating their im-
pact on memory function.
	 Various experiments have used the 
Morris water maze test to investigate rodent 
spatial learning and drug effects on cogni-
tive abilities (52,53). In this research, scopol-
amine-treated mice displayed cognitive impair-
ment, evidenced by increased escape latency, 
reduced crossing rates in the target quadrant, 
and decreased time spent there. Conversely, 
the administration of synergistic combinations 
notably improved these deficits across all dos-
es, decreasing escape latency and increasing 
both quadrant crossings and time spent in the 
target quadrant in comparison to the scopol-
amine group. These enhancements indicated 
improved learning during acquisition trials and 
better retention of the target quadrant area. 
Consequently, the synergistic combination no-
tably ameliorated spatial learning and mem-
ory in scopolamine-treated mice, particularly 
combinations H1 (50 mg/kg) and H2 (100 mg/
kg), which exhibited the most notable enhance-
ments in learning and memory.

	 Evaluating rodent spatial memory with 
the Y maze task relies on their natural explo-
ration behavior (54). Scopolamine in the cur-
rent study impairs this, reducing spontaneous 
alternation, a sign of spatial memory decline 
(38,55–57). In contrast, treating mice with 
the combined extracts H1 and H2 notably en-
hanced spatial working memory, evident in in-
creased spontaneous alterations compared to 
scopolamine-treated mice. Importantly, locomo-

tor activity remained unaffected by scopolamine 
or the combined extract treatments. These find-
ings indicate the potential of these synergistic 
combinations to enhance short-term memory, 
with H2 at 100 mg/kg showing the most promis-
ing results.

	 Multiple studies link oxidative stress 
to neurodegenerative diseases (58–60). Con-
versely, research findings support that antioxi-
dants can prevent damage caused by oxidative 
stress and enhance memory in animal models 
of Alzheimer’s disease (61). This study revealed 
that scopolamine- induced hippocampal oxida-
tive stress, evident in elevated MDA and H2O2 
levels. Physiologically, hydrogen peroxide can 
generate the highly toxic hydroxyl radical (OH-
) in cells via the Fe2+-dependent Fenton reac-
tion (62,63). Simultaneously, increased MDA 
signifies polyunsaturated fatty acid membrane 
damage due to lipid peroxidation (64,65). Con-
sequently, the surge in lipid oxidation products 
likely arises from hydrogen peroxide and its re-
sultant compounds, contributing to the observed 
hippocampal oxidative stress. In addition, sco-
polamine-treated mice exhibited elevated ox-
idative stress biomarkers alongside reduced 
SOD activity and GSH content, coupled with 
increased AChE activity, indicating that brain 
tissues were exposed to oxidative stress. Ac-
cording to Oyagbemi et al (66), SOD acts as a 
primary defense against tissue damage caused 
by oxidation, while GSH plays a pivotal role in 
cellular defense against oxidative injury(67). 
Conversely, AChE regulates acetylcholine, a 
neurotransmitter in synapses, disrupting its 
function (68). As a consequence of this study, 
treatment with the combined extracts H1 and 
H2 significantly reversed these alterations, de-
creasing MDA and H2O2 levels while increasing 
SOD activity and content of GSH, affirming their 
antioxidant potential. This confirmed our previ-
ous findings where we demonstrated the in vitro 
antioxidant capacity of the combined extracts 
H1 and H2 (45).

	 Furthermore,Scopolamine-treated 
mice exhibited notably increased hippocampal 
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glutathione peroxidase (GPx) and glutathione 
S-transferase (GST) activity, potentially indicat-
ing an adaptive response. Moreover, nitric ox-
ide’s role in learning and memory is well-docu-
mented in animal studies(69–71). Remarkably, 
administering the combined extracts H1 and H2 
to scopolamine-pretreated mice significantly 
raised hippocampal NO levels, indicating their 
potential to enhance spatial learning and mem-
ory. Additionally, the histopathological examina-
tion in this study displayed substantial cellular 
repair in the hippocampus CA1 region and den-
tate gyrus in mice treated with H1 and H2 (Fig-
ure 4), supporting their efficacy in enhancing 
learning and memory, consistent with biochemi-
cal markers.

	 In the rank of all the experiments and 
assays carried out in this study, H1 consistent-
ly displayed remarkable potential for cognitive 
improvement and oxidative stress reduction. 
As determined using the Morris water maze, 
the results highlighted its efficacy in enhancing 
learning and memory. From the biochemical 
analysis, it was evident that combination H1 
significantly modulated key biomarkers. This in-
cluded a marked decrease in oxidative stress 
markers (MDA and H2O2) and significant ele-
vations in the activity of SOD, GSH, and NO, all 
of which signify enhanced antioxidant defens-
es.  Furthermore, H1 was well-tolerated within 
a therapeutic range and positively impacted 
brain structure and cellular integrity based on 
acute toxicity assessments and histopathologi-
cal examination of brain tissues. Thus, the com-
bined extract of S. mombin, S. filicaulis, and P. 
guineense at a 2:2:4 ratio effectively enhanced 
cognitive function, mitigated oxidative stress, 
and reversed scopolamine-induced effects with-
in the hippocampal region of the brain

Conclusion

	 This study employed a comprehensive 
screening strategy to identify the most effec-
tive synergistic combination derived from the 
aqueous extracts of Spondias mombin  leaves, 
the whole plant of Spilanthes filicaulis, and Pip-

er guineense  fruits. The formulated blend was 
evaluated for its neuroprotective potential, 
specifically its ability to enhance cognitive 
performance, mitigate oxidative stress, and 
counteract scopolamine-induced impairments 
in the hippocampus of mouse brains.

	 Our findings provide compelling evi-
dence that the combined extracts of  S. mom-
bin,  S. filicaulis, and  P. guineense  exhibit 
significant synergistic effects, contributing 
to improved learning and memory functions. 
These results underscore the therapeutic 
promise of this phytochemical blend as a 
natural intervention for cognitive enhancement 
and neuroprotection.

	 However, while the observed outcomes 
are promising, further investigations are essen-
tial to fully understand the molecular and bio-
chemical mechanisms driving the synergistic in-
teractions among the plant constituents. Future 
studies should also explore dose optimization, 
long-term safety, and efficacy in diverse animal 
models and, eventually, in human clinical trials. 
Such research will be critical in validating the 
practical applications of this combination in the 
development of novel treatments for neurode-
generative disorders and cognitive decline.
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