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Abstract 

Because rectal cancer is a diverse 
disease, improving patient outcomes requires 
precision medicine and individualized surgical 
techniques. To identify important molecular 
subtypes that could affect therapeutic 
decision-making and precision surgery, this 
study combined unsupervised machine 
learning techniques with high-throughput 
microarray analysis. Using R software (v4.0.1), 
microarray-based gene expression data from 
the GSE253106 dataset were extracted from 
the Gene Expression Omnibus (GEO). The 
molecular subtypes of rectal cancer were 
identified using unsupervised machine learning 
techniques. Markov Clustering (MCL) mapped 
molecular networks involved in DNA repair 
and microenvironment interactions, while 
K-Means clustering grouped genes according 
to similarities in their expression. Density-
Based Spatial Clustering of Applications with 
Noise, or DBSCAN, identified uncommon tumor 
subtypes linked to aggressive characteristics. 
The findings showed that rectal cancer had 
411 DEGs, 348 of which were upregulated 
and 63 were downregulated. Genes such 
as TTTY15, RPS4Y1, and KDM5D were 
upregulated, whereas IGF2 and INS-IGF2 were 
downregulated. K-means clustering highlighted 
immune and metabolic regulation by grouping 
genes, such as C3AR1, TREM2, IGF2, and 

APOE. Networks involving DNA repair (FANCA, 
DAPK1) and the tumor microenvironment (AIF1, 
C1QA) were mapped using Markov Clustering 
(MCL). Rare aggressive subtypes were 
identified using DBSCAN, which also identified 
PLTP, ISG15, and TYROBP as indicators of 
immune evasion. TTTY15, KDM5D, and IGF2 
were identified by outlier detection, indicating 
their involvement in tumor progression and 
treatment response. By highlighting the 
important molecular subtypes of rectal cancer, 
this study demonstrates how machine learning 
can be used to improve precision oncology and 
surgical techniques. Biomarker-driven treatment 
strategies may benefit from additional functional 
validation, which would improve therapeutic 
results and patient stratification.
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Introduction

Globally, colorectal cancer (CRC) is the 
third most common cancer and the third most 
common cause of cancer-related death (1,2). 
Nearly one-third of new CRC diagnoses are for 
rectal cancer, which poses particular difficulties 
because of its intricate anatomy and high risk 
of local recurrence. Interestingly, it is becoming 
more common among younger people (3). 
A stepwise genetic model that explains 
the progression of colorectal cancer from 
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adenoma to carcinoma has been established 
by the research of Fearon and Vogelstein (4,5). 
Although this framework is generally applicable 
to the large intestine, new developments in 
sequencing technologies have shed more light 
on the distinct genetic makeup of rectal cancer. 
Despite advancements in systemic therapies, 
radiotherapy, and surgery, overall survival and 
recurrence rates remain below ideal levels.

Tumor behavior, response to 
treatment, and disease course are all greatly 
impacted by the molecular heterogeneity of 
rectal cancer(6). Although clinical staging is 
a major component of traditional treatment 
approaches, the management of rectal cancer 
may be completely transformed by integrating 
molecular and metabolic profiling into clinical 
decision making(7). To improve precision 
surgery and customized treatment plans, this 
study aimed to identify important molecular 
signatures, examine transcriptomic and miRNA 
interactions, examine protein-protein networks, 
and investigate metabolic changes.

Erratic responses to conventional 
treatments are a significant obstacle in the 
treatment of rectal cancer. Although patient 
responses vary, the current standard treatment 
for locally advanced rectal cancer is neoadjuvant 
chemoradiotherapy followed by total mesorectal 
excision (TME). Some patients show resistance, 
resulting in recurrence and metastasis, while 
others attain a complete pathological response. 
Overtreatment or undertreatment is caused by 
the absence of trustworthy molecular markers 
to predict therapy outcomes, highlighting the 
critical need for biomarkers to direct patient 
stratification and facilitate tailored therapy. 
Treatment resistance, immune evasion, and 
tumor progression are all significantly influenced 
by differentially expressed genes (DEGs). 
Genes with altered expression patterns can 
be identified using high-throughput microarray 
data. APC, TP53, and KRAS are the most 
commonly mutated genes in colorectal cancer 
(CRC) (8,9), and are also frequently altered in 
rectal cancer. Although KRAS mutations are 

less common in rectal cancer (39% vs. 65%), 
APC (78% vs. 70%), and TP53 (81% vs. 65%) 
mutation rates are higher in rectal tumors than 
in proximal colon tumors (9). PI3K, EGFR, 
Wnt/β-catenin, IGF, TGFβ, p53, DNA mismatch 
repair (MMR), extracellular matrix (ECM) 
remodelling, and epithelial-mesenchymal 
transition (EMT) are among the oncogenic 
pathways that are impacted by genomic, 
transcriptomic, and epigenetic changes that 
cause rectal cancer (10-13). PTEN, APC, TP53, 
and SMAD4 inactivation, KRAS mutations, and 
MYC overexpression are examples of common 
genetic changes (14). 

Machine learning is a potent tool 
for evaluating intricate genomic data and 
categorizing tumors into molecular subtypes 
(15). This study used unsupervised machine 
learning techniques to stratify patients 
with rectal cancer according to their gene 
expression patterns. This could help guide 
personalized treatment decisions by offering 
insights into prognosis, therapeutic response, 
and recurrence risk.

Rectal cancer remains a major clinical 
challenge because of its heterogeneity and 
inconsistent response to treatment (16). 
Promising approaches to enhance patient 
outcomes include identifying important 
molecular signatures and incorporating 
machine learning for molecular subtyping. This 
study aims to improve personalized medicine 
and precision surgery for rectal cancer by 
bridging the gap between molecular research 
and clinical practice. The knowledge acquired 
will not only improve our comprehension of 
the biology of rectal cancer but also set the 
stage for innovative patient-specific diagnostic, 
prognostic, and treatment strategies.  
The study’s goals  
1. To use high-throughput microarray data 
to examine differentially expressed genes 
(DEGs) in patients with rectal cancer.  
2. Examine gene expression data for rectal 
cancer and use patterns in gene expression to 
determine molecular subtypes.
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Materials and Methods 
Analysis of gene expression and microarray 
data 

Understanding the molecular landscape 
of rectal cancer requires knowledge of gene 
expression data derived from microarray 
analysis. High-throughput microarray and 
sequencing datasets were stored in the Gene 
Expression Omnibus (GEO), a public repository 
for functional genomic data. The GSE253106 
dataset, which was first deposited by Gupta et 
al. (17), was obtained for this study from GEO 
(https://www.ncbi.nlm.nih.gov/geo/) to conduct 
a thorough bioinformatics analysis.

Differential gene expression analysis and 
data processing 

R software (version 4.0.1) and 
Bioconductor, a potent tool for genomic data 
analysis (http://bioconductor.org/biocLite.R), 
were used to process the raw data and identify 
differentially expressed genes (DEGs). The 
dataset was normalized, standardized, and 
batch-corrected using the Limma package, 
a popular statistical framework for gene 
expression research. The primary purpose of 
Limma is to evaluate differential expression 
across experimental conditions by applying a 
linear model to gene expression data.

Fold-change values and a p-value 
threshold of 0.05 were used to filter the genes 
exhibiting significant changes in expression. 
A volcano plot was created using the ggplot2 
package, which clearly shows the upregulated 
and downregulated genes. Furthermore, 
hierarchical clustering was performed using 
the pheatmap package, which made it possible 
to identify patterns of gene expression across 
samples.

Rectal Cancer Molecular Subtyping Using 
Unsupervised Machine Learning 

Unsupervised machine learning 
techniques were used to identify unique 
molecular signatures in rectal cancer based 

solely on gene expression data, as clinical 
metadata was lacking. These signatures help 
identify possible biomarkers that can forecast 
tumor behavior, response to treatment, and 
recurrence risk by offering insights into tumor 
heterogeneity. To categorize gene expression 
profiles into clinically significant subtypes that 
could be further investigated for therapeutic 
stratification and precision surgery planning, we 
used multiple clustering algorithms.

Step 1: Preparing the Data and Choosing 
Features 

The dataset was preprocessed to 
eliminate noise and standardize the data to 
ensure robust clustering. 

The primary numerical characteristics 
listed below were chosen:  
The magnitude of variation in gene expression 
is represented by log2FoldChange.  
The variability in expression change is measured 
by the log fold change standard error, or lfcSE. 

Stat (statistical significance score) 
shows how reliable the expression change 
is. The average gene expression level, or 
baseMean, aids in the standardization of 
expression across samples. Subsequently, 
the dataset was scaled and standardized to 
guarantee consistency, which is necessary for 
machine learning models to function correctly.

Step 2: Using clustering techniques to find 
molecular subtypes 

Several unsupervised clustering 
techniques were used to identify gene clusters 
with comparable expression profiles, each 
of which has a specific benefit in identifying 
patterns and connections within the dataset.

K-Means clustering for wide-spread 
subtyping 

As a first step, K-means clustering 
was employed to group genes into discrete 
clusters according to their expression similarity. 
The Elbow Method was used to find the ideal 
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number of clusters, ensuring that the selection 
of subtypes maximized information while 
reducing redundancy. This approach produced 
a fundamental classification of molecular 
profiles by successfully grouping genes that 
share functional pathways.

Using markov clustering (mcl) to find func-
tional networks 

Functional gene networks were 
analyzed using Markov Clustering (MCL), 
which provides a classification that is more 
biologically meaningful. MCL groups genes 
according to their interactions within a biological 
network, as opposed to K-means, which is 
based on Euclidean distances. This method 
aids in identifying functionally related gene 
clusters, including those pertaining to metabolic 
pathways, DNA repair, and immune responses.

Using DBSCAN to find aggressive and rare 
tumour subtypes 

Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) was used 
to identify uncommon molecular subtypes, 
particularly those associated with aggressive 
tumor phenotypes. DBSCAN is density-based 
and does not require a set number of clusters, in 
contrast to conventional clustering techniques. 
Instead, it treats sparse areas of the dataset 
as noise and identifies high-density areas. This 
made it especially helpful in locating extremely 
aggressive outlier molecular signatures that 
might be connected to treatment resistance or 
poor prognosis.

Step 3: Dimensionality reduction and ad-
vanced visualisation 

Dimensionality reduction and 
visualization techniques were used to improve 
the interpretation of the clustering results and to 
obtain additional understanding of the molecular 
differences between subtypes. 

Gene relationship mapping using 
hierarchical clustering 

A dendrogram, or tree-like structure, 
was created using hierarchical clustering to show 

how genes cluster according to their expression 
similarity. This method provided information on 
pathways that might be differentially regulated 
in different rectal cancer subtypes by identifying 
unique clusters of co-expressed genes.

Using principal component analysis (PCA) 
to reduce features 

PCA was used to preserve the most 
informative features in the dataset while 
reducing its dimensional complexity. PCA 
enables the identification of important variance-
driving characteristics that differentiate various 
molecular subtypes by distilling thousands 
of gene expression values into a smaller 
set of principal components. This method 
was crucial for guaranteeing the robustness 
and interpretability of the clustering results.  

Heatmap analysis to visualize subtypes 

To provide a worldwide perspective 
on gene expression patterns, heatmaps were 
created, emphasizing highly expressed genes 
with different color gradients. This made it 
possible to compare molecular subtypes 
visually, which helped interpret patterns of gene 
expression unique to tumors that might affect 
treatment choices.

Results and Discussion

Sex-linked and metabolic gene dysregulation 
in rectal cancer: insights from differential 
gene expression

When 24,050 genes were examined for 
differential expression in a dataset of 18 patients 
with rectal cancer, 11,871 upregulated and 
12,179 downregulated genes were found (fig 
1). RPS4Y1, TTTY15, and TTTY14, all Y-linked, 
were markedly upregulated among the most 
overexpressed genes, indicating a possible 
sex-linked expression bias. Conversely, two of 
the most downregulated genes, IGF2 and INS-
IGF2, are important regulators of growth and 
metabolic pathways. This suggests that tumor 
progression may involve metabolic disruption.
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A total of 411 genes were differentially 
expressed, 348 of which were upregulated and 
63 were downregulated. The high expression 
of other Y-linked genes, including DDX3Y, 
TXLNGY, and USP9Y, supports the idea that 
sex-specific molecular variations may play a 
role in rectal cancer. In contrast, IGF2, INS-
IGF2, SV2C, and REG3A downregulation 
indicated changes in inflammatory signalling, 
immune control, and tumor metabolism. 

According to these results, rectal cancer 
shows unique patterns of gene dysregulation, 
which may impact prognosis, response to 
therapy, and tumor aggressiveness. Additional 
functional enrichment analysis could provide 
more insight into whether these molecular 
changes affect the course of the disease or the 
effectiveness of treatment.

Figure 1: Volcano plot

Analysis of GSE253106’s MA Plot 

The cases of males vs. Females in 
Rectal Cancer are shown in Figure 2. Males 
with significantly upregulated genes (red 
dots, Padj<0.05) had log2FoldChange values 
ranging from 2 to 10, many of which were 
Y-linked (TTTY15, RPS4Y1, UTY, and KDM5D), 
indicating sex-linked variations in tumor biology. 
In contrast, downregulated genes (blue dots, 
Padj<0.05) have negative log2FoldChange 
values (down to -5), which are probably related 
to tumor suppressors and hormonal signalling 

and affect tumor growth and response to 
treatment. 

There were no discernible sex-based 
differences in the majority of genes (black 
dots, Padj ≥ 0.05), which clustered around 
log2FoldChange = 0. Significantly, the most 
significant differential expression was observed 
in moderately expressed genes (log10 ≈ 2–3), 
whereas genes with higher mean expression 
(log10 > 4) showed less variation.

These patterns show the molecular 
heterogeneity of rectal cancer and indicate 
variations in gene regulation based on sex, 
which may affect tumor behavior and treatment 
approaches.

Figure 2: MA Plot

Results of unsupervised machine learning  
K-means grouping 

Significant molecular patterns were 
revealed by K-means clustering analysis, which 
divided genes with differential expressions in 
rectal cancer cases into discrete clusters (Fig. 
3). Cluster 1, with 213 genes, was the largest 
cluster and contained important players, such 
as ACP5, APOE, C3AR1, IGF2, ISG15, ITGAM, 
MARCO, MS4A4A, and TLR7. This cluster is 
rich in metabolic regulators, extracellular matrix 
remodelling proteins, and immune-related 
genes, indicating a role in immune modulation, 
tumor microenvironment interactions, and cancer 
progression. The presence of inflammatory 
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mediators (TREM2, SFRP2, and SIGLEC7) 
and macrophage markers (TYROBP, FCER1G, 
and CD14) suggest a possible correlation with 
immune infi ltration in rectal tumors.

Figure 3: K-means clustering-Elbow method

A more targeted metabolic and redox 
regulatory role is suggested by Clusters 2 
and 3, which each contain two genes (CDO1, 
CYBRD1, and BHMT2, SDS, respectively). 
CYBRD1 (Cytochrome B Reductase 1) is 
involved in iron metabolism, which is essential 
for tumor growth and progression, and CDO1 
(Cysteine Dioxygenase 1) is involved in cysteine 
metabolism, which is frequently associated with 
oxidative stress in cancer. Important participants 
in amino acid metabolism, BHMT2 (Betaine-
Homocysteine Methyltransferase 2) and SDS 
(Serine Dehydratase), may be linked to tumor 
cell adaptation to nutrients.

Genes related to metabolic and 
cardiovascular regulation were found in Cluster 
4 (NPR3, PGC), whereas genes associated 
with Fanconi anemia in Cluster 5 implied a link 
to DNA repair processes that could contribute to 
the genomic instability of rectal cancer. Cell-cell 
communication in the tumor microenvironment 
may be impacted by the mixed functional 
categories that Clusters 6 and 7 (SCAMP family, 
FAM219, IGFL2) appear to involve, including 
genes linked to vesicular transport and growth 
factor signalling. 

The unexpected association between 
eye development pathways and rectal 

cancer is intriguingly suggested by Cluster 8 
(nanophthalmos-related genes), which may 
indicate underlying developmental signalling 
mechanisms that require further research.

Clustering of MCL 

Based on gene expression profi les, the 
MCL clustering results revealed 56 clusters, 
each connected to a distinct biological process. 
Immune-related proteins, such as AIF1, C1QA, 
and CD14, were found in Cluster 1 (red, 43 
genes), suggesting a function in immune 
regulation and infl ammation. Proteins linked to 
the Y chromosome, such as DDX3Y and EIF1AY, 
were grouped together in Cluster 2 (Salmon, 
12 genes), indicating their functions specifi c to 
men. Lipoproteins involved in lipid metabolism, 
including APOC1 and APOE, were abundant 
in Cluster 3 (Fire Brick, 12 genes). Skeletal 
functions were highlighted by the presence of 
cartilage-associated proteins, such as COL9A3 
and COMP, in Cluster 4 (Salmon 2, 9 genes). 
Immunoglobulin genes and interferon-induced 
proteins were found in Cluster 5 (Fire Brick 
2, 8 genes) and Cluster 6 (Brown, 7 genes), 
respectively. Among the other noteworthy 
clusters was Cluster 7. (Dark Golden Rod 2, 6 
genes) with actin-binding proteins like ACTA2, 
Cluster 10 (Yellow, 5 genes) with growth factors 
like FGF1 and IGF2, and Cluster 19 (Cyan, 3 
genes) with proteins related to osteoclasts like 
ACP5. Overall, the clustering identifi ed clear 
functional groups that highlighted important 
pathways in growth, metabolism, immunity, and 
structural integrity.

Clustering using DB Scan

Genes were grouped into 14 clusters 
using DBSCAN clustering analysis, each of 
which was linked to a unique biological function. 
Important genes such as PLTP, APOC2, 
and TREM2 that highlight their roles in lipid 
metabolism and immune signalling, Cluster 
1 (Red) was enriched in immunoregulatory 
interactions and cholesterol transport. 
Y-chromosome genes (UTY, DDX3Y, and 
EIF1AY) associated with gonadoblastoma and 
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Sertoli cell-only syndrome were found in Cluster 
2 (Brown), indicating functions specifi c to men. 
Group 3

Complement activation genes (C1QA, 
C1QB, and VSIG4) were present in (Dark Golden 
Rod), suggesting their function in immune 
defence. Genes controlling lipopolysaccharide-
mediated signalling (CD14, LY86, and LY96), 
which are crucial for immune responses, were 
found in Cluster 4 (Yellow). Insulin-like growth 
factor binding (IGF2, IGFBP3, and IGFBP7) 
was the main focus of Cluster 5 (Olive), 
indicating a role in growth regulation. Genes 
linked to immunoglobulins (Cluster 6), interferon 
signalling (Cluster 7), NADPH oxidase activity 
(Cluster 9), thiol protease inhibitors (Cluster 
11), and endorphins (Cluster 12, with POMC 
and PENK) were among the other clusters. The 
genes ITGAM and SPI1, which are implicated in 
microglial cell-mediated cytotoxicity and may be 
related to neuroinfl ammation, were prominently 
highlighted in Cluster 14 (Pink). Functional 
pathways in immune regulation, metabolism, 
growth, and neurological processes were clearly 
defi ned using this clustering technique.

The Dendrogram illustrates the 
hierarchical grouping of genes (Fig. 4). 
Genes that cluster together may share similar 
biological processes or regulatory mechanisms. 
To reduce variance within clusters, theward 
linkage method was applied.

Figure 4: Hierarchical clustering

Outliers or abnormal genes with highly 
dysregulated expression were identifi ed using 
the Isolation Forest model (Fig. 5). Similar genes 
were also identifi ed by the One-Class SVM 
model as possibly uncommon dysregulated 
genes in rectal cancer. The PCA visualization 
plot shows how these anomalies diverge from 
the primary clusters.         

Figure 5: Anomaly detection Plot-Isolation forest 
Model

The correlations between log2Fold-
Change and P (-log10(P-value)) are displayed 
in the heatmap (Fig. 6). Genes that exhibit com-
parable patterns of expression in rectal cancer 
are suggested by a strong correlation, whether 
positive or negative, which aids in the discovery 
of patterns of gene co-expression that may be 
helpful for additional biological pathway analy-
sis.

Figure 6: Heatmap plot for the correlation of 
genes
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Discussion 

The comprehensive molecular 
landscape of rectal cancer described in this study 
can aid precision surgical procedures. A total 
of 411 differentially expressed genes (DEGs) 
were found, 348 of which were upregulated 
and 63 were downregulated. Male patients may 
require more aggressive resection because of 
their higher tumor proliferation, according to 
upregulated Y-linked genes (TTTY15, TTTY14, 
RPS4Y1, and KDM5D), which suggests sex-
specific tumor differences(18). In contrast, 
downregulated genes (SV2C, REG3A, INS-
IGF2, and IGF2) indicated immunological and 
metabolic abnormalities. Tumors may respond 
to perioperative metabolic interventions for 
improved recovery by suppressing IGF2 
signaling. Tumors with compromised repair 
mechanisms may benefit from neoadjuvant 
chemotherapy or radiation to enhance surgical 
outcomes according to altered DNA repair 
genes (FANCA, DAPK1).

There are no reliable indicators of a full 
pathological response following neoadjuvant 
chemoradiotherapy, according to a systematic 
review that examined pathological, imaging, 
and molecular factors (19). SNPs, protein 
expression profiles, TP53 and KRAS mutations, 
gene signatures (microarray data), and other 
biomarkers were assessed; however, the results 
were inconclusive. Following neoadjuvant 
therapy, KRAS-mutant tumors had a significantly 
lower complete pathological response rate 
(15%) than KRAS wild-type tumors (34%), 
according to a multicenter study of 292 patients 
with stage II/III rectal cancer (20). Furthermore, 
KRAS mutations were linked to an increased 
risk of recurrence following local excision in 
patients with stage I rectal cancer (21).

The impact of tumor heterogeneity on 
surgical outcomes was also highlighted in this 
study, as distinct molecular subtypes exhibit 
varying rates of recurrence and responses 
to treatment. The necessity of molecular 
subtyping in surgical planning is highlighted by 

the correlation between genomic changes and 
survival rates of patients. Strategic preoperative 
approaches and surgical technique optimization 
are made possible by identifying high-risk 
patients, which improves oncological outcomes. 

Patients with rectal cancer were 
effectively categorized into discrete molecular 
subtypes using unsupervised machine 
learning analysis, each of which has particular 
prognostic implications(22). The survival rates 
of patients with high-risk molecular subtypes 
were noticeably lower, highlighting the need for 
more aggressive surgical techniques. Patients 
with less aggressive molecular signatures, on 
the other hand, might be a good fit for organ-
preserving techniques, which would lower 
postoperative morbidity while preserving 
oncological control.

The ideal number of clusters (K=3) was 
ascertained using the Elbow Method plot. The 
three clusters were displayed in 2D space in the 
PCA visualization, signifying discrete groups 
according to patterns of gene expression, 
implying that certain genes exhibit similar 
expression patterns in rectal cancer. 

By classifying patients according 
to molecular risk factors, the results of 
machine learning-based stratification offer a 
significant supplement to precision surgery. 
Forecasting postsurgical results more 
accurately and adjusting interventions using 
artificial intelligence-driven methodologies are 
feasible(23). To improve treatment efficacy, 
patients whose tumors express high levels 
of therapy-resistant genes may require more 
intensive neoadjuvant therapies before 
surgery. In the progression of rectal cancer, 
K-means clustering results identified tumor 
microenvironment interactions, metabolic 
adaptation, immune system regulation, and 
DNA repair as important molecular features 
that may be targets for precision medicine and 
therapeutic approaches. 

The dominant Cluster 1 (Red, 213 
proteins) in the k-means clustering highlighted 
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inflammatory and metabolic pathways and was 
enriched in immune response, metabolism, 
lipid transport, and signalling. The identified 
proteins included ACP5, APOE, and TLR7. The 
two proteins in the remaining clusters, FANCA 
(DNA repair) in Cluster 5 and CDO1 (sulfur 
metabolism) in Cluster 2, represent specialized 
functions. The prevalence of Cluster 1 suggests 
strong functional similarities, mainly in immune 
regulation and metabolism.

A total of 56 clusters were identified 
using MCL clustering, and each was associated 
with a specific biological process. Immune 
regulation was the main focus of Cluster 1, 
male-specific functions were the focus of Cluster 
2, lipid metabolism was the focus of Cluster 3, 
and skeletal functions were the focus of Cluster 
4. Immunoglobulins, interferon response, actin-
binding proteins, growth factors, and proteins 
related to osteoclasts were highlighted in other 
clusters. Overall, the analysis identified unique 
functional pathways in growth, metabolism, 
immunity, and structural integrity. 

Fourteen gene clusters related 
to immunity, metabolism, growth, and 
neuroinflammation were identified using 
DBSCAN clustering. Y-chromosome genes 
(Cluster 2), complement activation (Cluster 
3), insulin-like growth factor binding (Cluster 
5), interferon signalling (Cluster 7), NADPH 
oxidase activity (Cluster 9), immune regulation 
and lipid metabolism (Cluster 1), and microglial 
cytotoxicity (Cluster 14) are important groups. 
The Dendrogram illustrates the hierarchical 
grouping of genes. Genes that cluster together 
may share similar biological processes or 
regulatory mechanisms. To reduce variance 
within clusters, theward linkage method was 
applied.

Among the most severely dysregulated 
genes were TTTY15, TTTY14, RPS4Y1, 
DDX3Y, and TXLNGY. These genes merit 
further biological research because they may 
be important in rectal cancer. A possible sex-
related influence on gene expression patterns 

was suggested because many genes are linked 
to the Y chromosome.

These results highlight the need for 
additional biological validation and pathway 
analysis and are consistent with previous 
research on Y-linked gene dysregulation 
in cancer. The usefulness of unsupervised 
learning for tumor subtype classification and 
biomarker discovery has been reinforced using 
similar clustering techniques in oncogenomics 
research (24,25). 

The correlations between 
log2FoldChange and P (-log10(P-value)) are 
displayed in the heatmap. Genes that exhibit 
comparable patterns of expression in rectal 
cancer are suggested by a strong correlation, 
whether positive or negative, which aids in the 
discovery of patterns of gene co-expression that 
may be helpful for additional biological pathway 
analysis. 

Decisions regarding tumor resectability, 
lymph node clearance, and neoadjuvant therapy 
are guided by the integration of molecular 
findings into precision surgical planning. This has 
enabled the identification of therapeutic targets 
and biomarkers that can enhance individualized 
treatment plans, such as metabolic-targeted 
therapies and immunotherapy. This study 
focused on the framework for improving patient 
outcomes in rectal cancer by integrating 
genomic, transcriptomic, and metabolomic data 
into clinical decision-making.

Conclusion 

By combining gene expression profiles 
and machine learning algorithms, precision 
surgery for rectal cancer can be improved, 
and customized treatment plans can be 
implemented. Clustering analyses revealed 
important tumor subtypes associated with 
immune regulation, DNA repair, and tumor 
aggressiveness. Patients with downregulated 
IGF2 or FANCA pathways may be candidates 
for organ-preserving strategies with metabolic 
or immune support, whereas those with highly 
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proliferative genes (RPS4Y1, KDM5D) may 
benefit from neoadjuvant therapy.
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