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Abstract

Because rectal cancer is a diverse
disease, improving patient outcomes requires
precision medicine and individualized surgical
techniques. To identify important molecular
subtypes that could affect therapeutic
decision-making and precision surgery, this
study combined unsupervised machine
learning techniques with  high-throughput
microarray analysis. Using R software (v4.0.1),
microarray-based gene expression data from
the GSE253106 dataset were extracted from
the Gene Expression Omnibus (GEO). The
molecular subtypes of rectal cancer were
identified using unsupervised machine learning
techniques. Markov Clustering (MCL) mapped
molecular networks involved in DNA repair
and microenvironment interactions, while
K-Means clustering grouped genes according
to similarities in their expression. Density-
Based Spatial Clustering of Applications with
Noise, or DBSCAN, identified uncommon tumor
subtypes linked to aggressive characteristics.
The findings showed that rectal cancer had
411 DEGs, 348 of which were upregulated
and 63 were downregulated. Genes such
as TTTY15, RPS4Y1, and KDM5D were
upregulated, whereas IGF2 and INS-IGF2 were
downregulated. K-means clustering highlighted
immune and metabolic regulation by grouping
genes, such as C3AR1, TREM2, IGF2, and

APOE. Networks involving DNA repair (FANCA,
DAPK1) and the tumor microenvironment (AlF1,
C1QA) were mapped using Markov Clustering
(MCL). Rare aggressive subtypes were
identified using DBSCAN, which also identified
PLTP, ISG15, and TYROBP as indicators of
immune evasion. TTTY15, KDM5D, and IGF2
were identified by outlier detection, indicating
their involvement in tumor progression and
treatment response. By highlighting the
important molecular subtypes of rectal cancer,
this study demonstrates how machine learning
can be used to improve precision oncology and
surgical techniques. Biomarker-driven treatment
strategies may benefit from additional functional
validation, which would improve therapeutic
results and patient stratification.
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Introduction

Globally, colorectal cancer (CRC) is the
third most common cancer and the third most
common cause of cancer-related death (1,2).
Nearly one-third of new CRC diagnoses are for
rectal cancer, which poses particular difficulties
because of its intricate anatomy and high risk
of local recurrence. Interestingly, it is becoming
more common among younger people (3).
A stepwise genetic model that explains
the progression of colorectal cancer from
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adenoma to carcinoma has been established
by the research of Fearon and Vogelstein (4,5).
Although this framework is generally applicable
to the large intestine, new developments in
sequencing technologies have shed more light
on the distinct genetic makeup of rectal cancer.
Despite advancements in systemic therapies,
radiotherapy, and surgery, overall survival and
recurrence rates remain below ideal levels.

Tumor behavior, response to
treatment, and disease course are all greatly
impacted by the molecular heterogeneity of
rectal cancer(6). Although clinical staging is
a major component of traditional treatment
approaches, the management of rectal cancer
may be completely transformed by integrating
molecular and metabolic profiling into clinical
decision making(7). To improve precision
surgery and customized treatment plans, this
study aimed to identify important molecular
signatures, examine transcriptomic and miRNA
interactions, examine protein-protein networks,
and investigate metabolic changes.

Erratic responses to conventional
treatments are a significant obstacle in the
treatment of rectal cancer. Although patient
responses vary, the current standard treatment
forlocally advanced rectal cancer is neoadjuvant
chemoradiotherapy followed by total mesorectal
excision (TME). Some patients show resistance,
resulting in recurrence and metastasis, while
others attain a complete pathological response.
Overtreatment or undertreatment is caused by
the absence of trustworthy molecular markers
to predict therapy outcomes, highlighting the
critical need for biomarkers to direct patient
stratification and facilitate tailored therapy.
Treatment resistance, immune evasion, and
tumor progression are all significantly influenced
by differentially expressed genes (DEGs).
Genes with altered expression patterns can
be identified using high-throughput microarray
data. APC, TP53, and KRAS are the most
commonly mutated genes in colorectal cancer
(CRC) (8,9), and are also frequently altered in
rectal cancer. Although KRAS mutations are

less common in rectal cancer (39% vs. 65%),
APC (78% vs. 70%), and TP53 (81% vs. 65%)
mutation rates are higher in rectal tumors than
in proximal colon tumors (9). PI3K, EGFR,
Wnt/B-catenin, IGF, TGFB, p53, DNA mismatch
repair (MMR), extracellular matrix (ECM)
remodelling, and  epithelial-mesenchymal
transition (EMT) are among the oncogenic
pathways that are impacted by genomic,
transcriptomic, and epigenetic changes that
cause rectal cancer (10-13). PTEN, APC, TP53,
and SMAD4 inactivation, KRAS mutations, and
MY C overexpression are examples of common
genetic changes (14).

Machine learning is a potent tool
for evaluating intricate genomic data and
categorizing tumors into molecular subtypes
(15). This study used unsupervised machine
learning techniques to stratify patients
with rectal cancer according to their gene
expression patterns. This could help guide
personalized treatment decisions by offering
insights into prognosis, therapeutic response,
and recurrence risk.

Rectal cancer remains a major clinical
challenge because of its heterogeneity and
inconsistent response to treatment (16).
Promising approaches to enhance patient
outcomes include identifying  important
molecular  signatures and  incorporating
machine learning for molecular subtyping. This
study aims to improve personalized medicine
and precision surgery for rectal cancer by
bridging the gap between molecular research
and clinical practice. The knowledge acquired
will not only improve our comprehension of
the biology of rectal cancer but also set the
stage for innovative patient-specific diagnostic,
prognostic, and treatment strategies.
The study’s goals
1. To use high-throughput microarray data
to examine differentially expressed genes
(DEGs) in patients with rectal cancer.
2. Examine gene expression data for rectal
cancer and use patterns in gene expression to
determine molecular subtypes.
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Materials and Methods
Analysis of gene expression and microarray
data

Understanding the molecular landscape
of rectal cancer requires knowledge of gene
expression data derived from microarray
analysis. High-throughput microarray and
sequencing datasets were stored in the Gene
Expression Omnibus (GEO), a public repository
for functional genomic data. The GSE253106
dataset, which was first deposited by Gupta et
al. (17), was obtained for this study from GEO
(https://www.ncbi.nlm.nih.gov/geo/) to conduct
a thorough bioinformatics analysis.

Differential gene expression analysis and
data processing

R software (version 4.0.1) and
Bioconductor, a potent tool for genomic data
analysis  (http://bioconductor.org/biocLite.R),
were used to process the raw data and identify
differentially expressed genes (DEGs). The
dataset was normalized, standardized, and
batch-corrected using the Limma package,
a popular statistical framework for gene
expression research. The primary purpose of
Limma is to evaluate differential expression
across experimental conditions by applying a
linear model to gene expression data.

Fold-change values and a p-value
threshold of 0.05 were used to filter the genes
exhibiting significant changes in expression.
A volcano plot was created using the ggplot2
package, which clearly shows the upregulated
and downregulated genes. Furthermore,
hierarchical clustering was performed using
the pheatmap package, which made it possible
to identify patterns of gene expression across
samples.

Rectal Cancer Molecular Subtyping Using
Unsupervised Machine Learning

Unsupervised machine learning
techniques were used to identify unique
molecular signatures in rectal cancer based

solely on gene expression data, as clinical
metadata was lacking. These signatures help
identify possible biomarkers that can forecast
tumor behavior, response to treatment, and
recurrence risk by offering insights into tumor
heterogeneity. To categorize gene expression
profiles into clinically significant subtypes that
could be further investigated for therapeutic
stratification and precision surgery planning, we
used multiple clustering algorithms.

Step 1: Preparing the Data and Choosing
Features

The dataset was preprocessed to
eliminate noise and standardize the data to
ensure robust clustering.

The  primary  numerical  characteristics
listed below were chosen:
The magnitude of variation in gene expression
is represented by log2FoldChange.
The variability in expression change is measured
by the log fold change standard error, or IfcSE.

Stat (statistical significance score)
shows how reliable the expression change
is. The average gene expression level, or
baseMean, aids in the standardization of
expression across samples. Subsequently,
the dataset was scaled and standardized to
guarantee consistency, which is necessary for
machine learning models to function correctly.

Step 2: Using clustering techniques to find
molecular subtypes

Several unsupervised clustering
techniques were used to identify gene clusters
with comparable expression profiles, each
of which has a specific benefit in identifying
patterns and connections within the dataset.

K-Means for

subtyping

clustering wide-spread

As a first step, K-means clustering
was employed to group genes into discrete
clusters according to their expression similarity.
The Elbow Method was used to find the ideal
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number of clusters, ensuring that the selection
of subtypes maximized information while
reducing redundancy. This approach produced
a fundamental classification of molecular
profiles by successfully grouping genes that
share functional pathways.

Using markov clustering (mcl) to find func-
tional networks

Functional gene networks were
analyzed using Markov Clustering (MCL),
which provides a classification that is more
biologically meaningful. MCL groups genes
according to their interactions within a biological
network, as opposed to K-means, which is
based on Euclidean distances. This method
aids in identifying functionally related gene
clusters, including those pertaining to metabolic
pathways, DNA repair, and immune responses.

Using DBSCAN to find aggressive and rare
tumour subtypes

Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) was used
to identify uncommon molecular subtypes,
particularly those associated with aggressive
tumor phenotypes. DBSCAN is density-based
and does not require a set number of clusters, in
contrast to conventional clustering techniques.
Instead, it treats sparse areas of the dataset
as noise and identifies high-density areas. This
made it especially helpful in locating extremely
aggressive outlier molecular signatures that
might be connected to treatment resistance or
poor prognosis.

Step 3: Dimensionality reduction and ad-
vanced visualisation

Dimensionality reduction and
visualization techniques were used to improve
the interpretation of the clustering results and to
obtain additional understanding of the molecular
differences between subtypes.

Gene relationship mapping using
hierarchical clustering

A dendrogram, or tree-like structure,
was created using hierarchical clustering to show

how genes cluster according to their expression
similarity. This method provided information on
pathways that might be differentially regulated
in different rectal cancer subtypes by identifying
unique clusters of co-expressed genes.

Using principal component analysis (PCA)
to reduce features

PCA was used to preserve the most
informative features in the dataset while
reducing its dimensional complexity. PCA
enables the identification of important variance-
driving characteristics that differentiate various
molecular subtypes by distilling thousands
of gene expression values into a smaller
set of principal components. This method
was crucial for guaranteeing the robustness
and interpretability of the clustering results.

Heatmap analysis to visualize subtypes

To provide a worldwide perspective
on gene expression patterns, heatmaps were
created, emphasizing highly expressed genes
with different color gradients. This made it
possible to compare molecular subtypes
visually, which helped interpret patterns of gene
expression unique to tumors that might affect
treatment choices.

Results and Discussion

Sex-linked and metabolic gene dysregulation
in rectal cancer: insights from differential
gene expression

When 24,050 genes were examined for
differential expression in a dataset of 18 patients
with rectal cancer, 11,871 upregulated and
12,179 downregulated genes were found (fig
1). RPS4Y1, TTTY15, and TTTY 14, all Y-linked,
were markedly upregulated among the most
overexpressed genes, indicating a possible
sex-linked expression bias. Conversely, two of
the most downregulated genes, IGF2 and INS-
IGF2, are important regulators of growth and
metabolic pathways. This suggests that tumor
progression may involve metabolic disruption.
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A total of 411 genes were differentially
expressed, 348 of which were upregulated and
63 were downregulated. The high expression
of other Y-linked genes, including DDX3Y,
TXLNGY, and USP9Y, supports the idea that
sex-specific molecular variations may play a
role in rectal cancer. In contrast, IGF2, INS-
IGF2, SV2C, and REG3A downregulation
indicated changes in inflammatory signalling,
immune control, and tumor metabolism.

According to these results, rectal cancer
shows unique patterns of gene dysregulation,
which may impact prognosis, response to
therapy, and tumor aggressiveness. Additional
functional enrichment analysis could provide
more insight into whether these molecular
changes affect the course of the disease or the
effectiveness of treatment.

and affect tumor growth and response to
treatment.

There were no discernible sex-based
differences in the majority of genes (black
dots, Padj = 0.05), which clustered around
log2FoldChange = 0. Significantly, the most
significant differential expression was observed
in moderately expressed genes (log10 = 2-3),
whereas genes with higher mean expression
(log10 > 4) showed less variation.

These patterns show the molecular
heterogeneity of rectal cancer and indicate
variations in gene regulation based on sex,
which may affect tumor behavior and treatment
approaches.

GSE253106: Cases males vs Cases females
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Figure 1: Volcano plot
Analysis of GSE253106°s MA Plot

The cases of males vs. Females in
Rectal Cancer are shown in Figure 2. Males
with  significantly upregulated genes (red
dots, Padj<0.05) had log2FoldChange values
ranging from 2 to 10, many of which were
Y-linked (TTTY15, RPS4Y1, UTY, and KDM5D),
indicating sex-linked variations in tumor biology.
In contrast, downregulated genes (blue dots,
Padj<0.05) have negative log2FoldChange
values (down to -5), which are probably related
to tumor suppressors and hormonal signalling

mean of normalized counts

Figure 2: MA Plot

Results of unsupervised machine learning
K-means grouping

Significant molecular patterns were
revealed by K-means clustering analysis, which
divided genes with differential expressions in
rectal cancer cases into discrete clusters (Fig.
3). Cluster 1, with 213 genes, was the largest
cluster and contained important players, such
as ACP5, APOE, C3ART1, IGF2, ISG15, ITGAM,
MARCO, MS4A4A, and TLRY7. This cluster is
rich in metabolic regulators, extracellular matrix
remodelling proteins, and immune-related
genes, indicating a role in immune modulation,
tumormicroenvironmentinteractions,and cancer
progression. The presence of inflammatory
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mediators (TREM2, SFRP2, and SIGLEC?7)
and macrophage markers (TYROBP, FCER1G,
and CD14) suggest a possible correlation with
immune infiltration in rectal tumors.
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Figure 3: K-means clustering-Elbow method

A more targeted metabolic and redox
regulatory role is suggested by Clusters 2
and 3, which each contain two genes (CDO1,
CYBRD1, and BHMT2, SDS, respectively).
CYBRD1 (Cytochrome B Reductase 1) is
involved in iron metabolism, which is essential
for tumor growth and progression, and CDO1
(Cysteine Dioxygenase 1) is involved in cysteine
metabolism, which is frequently associated with
oxidative stress in cancer. Important participants
in amino acid metabolism, BHMT2 (Betaine-
Homocysteine Methyltransferase 2) and SDS
(Serine Dehydratase), may be linked to tumor
cell adaptation to nutrients.

Genes related to metabolic and
cardiovascular regulation were found in Cluster
4 (NPR3, PGC), whereas genes associated
with Fanconi anemia in Cluster 5 implied a link
to DNA repair processes that could contribute to
the genomic instability of rectal cancer. Cell-cell
communication in the tumor microenvironment
may be impacted by the mixed functional
categories that Clusters 6 and 7 (SCAMP family,
FAM219, IGFL2) appear to involve, including
genes linked to vesicular transport and growth
factor signalling.

The unexpected association between

eye development pathways and rectal

cancer is intriguingly suggested by Cluster 8
(nanophthalmos-related genes), which may
indicate underlying developmental signalling
mechanisms that require further research.

Clustering of MCL

Based on gene expression profiles, the
MCL clustering results revealed 56 clusters,
each connected to a distinct biological process.
Immune-related proteins, such as AIF1, C1QA,
and CD14, were found in Cluster 1 (red, 43
genes), suggesting a function in immune
regulation and inflammation. Proteins linked to
the'Y chromosome, such as DDX3Y and EIF1AY,
were grouped together in Cluster 2 (Salmon,
12 genes), indicating their functions specific to
men. Lipoproteins involved in lipid metabolism,
including APOC1 and APOE, were abundant
in Cluster 3 (Fire Brick, 12 genes). Skeletal
functions were highlighted by the presence of
cartilage-associated proteins, such as COL9A3
and COMP, in Cluster 4 (Salmon 2, 9 genes).
Immunoglobulin genes and interferon-induced
proteins were found in Cluster 5 (Fire Brick
2, 8 genes) and Cluster 6 (Brown, 7 genes),
respectively. Among the other noteworthy
clusters was Cluster 7. (Dark Golden Rod 2, 6
genes) with actin-binding proteins like ACTAZ2,
Cluster 10 (Yellow, 5 genes) with growth factors
like FGF1 and IGF2, and Cluster 19 (Cyan, 3
genes) with proteins related to osteoclasts like
ACP5. Overall, the clustering identified clear
functional groups that highlighted important
pathways in growth, metabolism, immunity, and
structural integrity.

Clustering using DB Scan

Genes were grouped into 14 clusters
using DBSCAN clustering analysis, each of
which was linked to a unique biological function.
Important genes such as PLTP, APOC2,
and TREM2 that highlight their roles in lipid
metabolism and immune signalling, Cluster
1 (Red) was enriched in immunoregulatory
interactions and  cholesterol  transport.
Y-chromosome genes (UTY, DDX3Y, and
EIF1AY) associated with gonadoblastoma and
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Sertoli cell-only syndrome were found in Cluster
2 (Brown), indicating functions specific to men.
Group 3

Complement activation genes (C1QA,
C1QB, and VSIG4)were presentin (Dark Golden
Rod), suggesting their function in immune
defence. Genes controlling lipopolysaccharide-
mediated signalling (CD14, LY86, and LY96),
which are crucial for immune responses, were
found in Cluster 4 (Yellow). Insulin-like growth
factor binding (IGF2, IGFBP3, and IGFBP7)
was the main focus of Cluster 5 (Olive),
indicating a role in growth regulation. Genes
linked to immunoglobulins (Cluster 6), interferon
signalling (Cluster 7), NADPH oxidase activity
(Cluster 9), thiol protease inhibitors (Cluster
11), and endorphins (Cluster 12, with POMC
and PENK) were among the other clusters. The
genes ITGAM and SPI1, which are implicated in
microglial cell-mediated cytotoxicity and may be
related to neuroinflammation, were prominently
highlighted in Cluster 14 (Pink). Functional
pathways in immune regulation, metabolism,
growth, and neurological processes were clearly
defined using this clustering technique.

The Dendrogram illustrates the
hierarchical grouping of genes (Fig. 4).
Genes that cluster together may share similar
biological processes or regulatory mechanisms.
To reduce variance within clusters, theward
linkage method was applied.

Hierarchical Clustering Dendrogram

Distance

Genes

Figure 4: Hierarchical clustering

Outliers or abnormal genes with highly
dysregulated expression were identified using
the Isolation Forest model (Fig. 5). Similar genes
were also identified by the One-Class SVM
model as possibly uncommon dysregulated
genes in rectal cancer. The PCA visualization
plot shows how these anomalies diverge from
the primary clusters.
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Figure 5: Anomaly detection Plot-Isolation forest
Model

The correlations between log2Fold-
Change and P (-log10(P-value)) are displayed
in the heatmap (Fig. 6). Genes that exhibit com-
parable patterns of expression in rectal cancer
are suggested by a strong correlation, whether
positive or negative, which aids in the discovery
of patterns of gene co-expression that may be
helpful for additional biological pathway analy-
sis

Heatmap of Gene Expression Correlations
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Figure 6: Heatmap plot for the correlation of
genes
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The comprehensive molecular
landscape of rectal cancer described in this study
can aid precision surgical procedures. A total
of 411 differentially expressed genes (DEGs)
were found, 348 of which were upregulated
and 63 were downregulated. Male patients may
require more aggressive resection because of
their higher tumor proliferation, according to
upregulated Y-linked genes (TTTY15, TTTY14,
RPS4Y1, and KDM5D), which suggests sex-
specific tumor differences(18). In contrast,
downregulated genes (SV2C, REG3A, INS-
IGF2, and IGF2) indicated immunological and
metabolic abnormalities. Tumors may respond
to perioperative metabolic interventions for
improved recovery by suppressing IGF2
signaling. Tumors with compromised repair
mechanisms may benefit from neoadjuvant
chemotherapy or radiation to enhance surgical
outcomes according to altered DNA repair
genes (FANCA, DAPK1).

There are no reliable indicators of a full
pathological response following neoadjuvant
chemoradiotherapy, according to a systematic
review that examined pathological, imaging,
and molecular factors (19). SNPs, protein
expression profiles, TP53 and KRAS mutations,
gene signatures (microarray data), and other
biomarkers were assessed; however, the results
were inconclusive. Following neoadjuvant
therapy, KRAS-mutant tumors had a significantly
lower complete pathological response rate
(15%) than KRAS wild-type tumors (34%),
according to a multicenter study of 292 patients
with stage Il/lll rectal cancer (20). Furthermore,
KRAS mutations were linked to an increased
risk of recurrence following local excision in
patients with stage | rectal cancer (21).

The impact of tumor heterogeneity on
surgical outcomes was also highlighted in this
study, as distinct molecular subtypes exhibit
varying rates of recurrence and responses
to treatment. The necessity of molecular
subtyping in surgical planning is highlighted by

the correlation between genomic changes and
survival rates of patients. Strategic preoperative
approaches and surgical technique optimization
are made possible by identifying high-risk
patients, which improves oncological outcomes.

Patients with rectal cancer were
effectively categorized into discrete molecular
subtypes  using unsupervised machine
learning analysis, each of which has particular
prognostic implications(22). The survival rates
of patients with high-risk molecular subtypes
were noticeably lower, highlighting the need for
more aggressive surgical techniques. Patients
with less aggressive molecular signatures, on
the other hand, might be a good fit for organ-
preserving techniques, which would lower
postoperative  morbidity while preserving
oncological control.

The ideal number of clusters (K=3) was
ascertained using the Elbow Method plot. The
three clusters were displayed in 2D space in the
PCA visualization, signifying discrete groups
according to patterns of gene expression,
implying that certain genes exhibit similar
expression patterns in rectal cancer.

By classifying patients according
to molecular risk factors, the results of
machine learning-based stratification offer a
significant supplement to precision surgery.
Forecasting  postsurgical  results  more
accurately and adjusting interventions using
artificial intelligence-driven methodologies are
feasible(23). To improve treatment efficacy,
patients whose tumors express high levels
of therapy-resistant genes may require more
intensive  neoadjuvant therapies before
surgery. In the progression of rectal cancer,
K-means clustering results identified tumor
microenvironment  interactions, = metabolic
adaptation, immune system regulation, and
DNA repair as important molecular features
that may be targets for precision medicine and
therapeutic approaches.

The dominant Cluster 1 (Red, 213
proteins) in the k-means clustering highlighted
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inflammatory and metabolic pathways and was
enriched in immune response, metabolism,
lipid transport, and signalling. The identified
proteins included ACP5, APOE, and TLR7. The
two proteins in the remaining clusters, FANCA
(DNA repair) in Cluster 5 and CDO1 (sulfur
metabolism) in Cluster 2, represent specialized
functions. The prevalence of Cluster 1 suggests
strong functional similarities, mainly in immune
regulation and metabolism.

A total of 56 clusters were identified
using MCL clustering, and each was associated
with a specific biological process. Immune
regulation was the main focus of Cluster 1,
male-specific functions were the focus of Cluster
2, lipid metabolism was the focus of Cluster 3,
and skeletal functions were the focus of Cluster
4. Immunoglobulins, interferon response, actin-
binding proteins, growth factors, and proteins
related to osteoclasts were highlighted in other
clusters. Overall, the analysis identified unique
functional pathways in growth, metabolism,
immunity, and structural integrity.

Fourteen gene clusters related
to immunity, metabolism, growth, and
neuroinflammation were identified using

DBSCAN clustering. Y-chromosome genes
(Cluster 2), complement activation (Cluster
3), insulin-like growth factor binding (Cluster
5), interferon signalling (Cluster 7), NADPH
oxidase activity (Cluster 9), immune regulation
and lipid metabolism (Cluster 1), and microglial
cytotoxicity (Cluster 14) are important groups.
The Dendrogram illustrates the hierarchical
grouping of genes. Genes that cluster together
may share similar biological processes or
regulatory mechanisms. To reduce variance
within clusters, theward linkage method was
applied.

Among the most severely dysregulated
genes were TTTY15, TTTY14, RPS4Y1,
DDX3Y, and TXLNGY. These genes merit
further biological research because they may
be important in rectal cancer. A possible sex-
related influence on gene expression patterns

was suggested because many genes are linked
to the Y chromosome.

These results highlight the need for
additional biological validation and pathway
analysis and are consistent with previous
research on Y-linked gene dysregulation
in cancer. The usefulness of unsupervised
learning for tumor subtype classification and
biomarker discovery has been reinforced using
similar clustering techniques in oncogenomics
research (24,25).

The correlations between
log2FoldChange and P (-log10(P-value)) are
displayed in the heatmap. Genes that exhibit
comparable patterns of expression in rectal
cancer are suggested by a strong correlation,
whether positive or negative, which aids in the
discovery of patterns of gene co-expression that
may be helpful for additional biological pathway
analysis.

Decisions regarding tumor resectability,
lymph node clearance, and neoadjuvant therapy
are guided by the integration of molecular
findings into precision surgical planning. This has
enabled the identification of therapeutic targets
and biomarkers that can enhance individualized
treatment plans, such as metabolic-targeted
therapies and immunotherapy. This study
focused on the framework for improving patient
outcomes in rectal cancer by integrating
genomic, transcriptomic, and metabolomic data
into clinical decision-making.

Conclusion

By combining gene expression profiles
and machine learning algorithms, precision
surgery for rectal cancer can be improved,
and customized treatment plans can be
implemented. Clustering analyses revealed
important tumor subtypes associated with
immune regulation, DNA repair, and tumor
aggressiveness. Patients with downregulated
IGF2 or FANCA pathways may be candidates
for organ-preserving strategies with metabolic
or immune support, whereas those with highly
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proliferative genes (RPS4Y1, KDM5D) may
benefit from neoadjuvant therapy.
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