

Phytochemical Profiling and Cardiometabolic Potential of *Cocos nucifera* Bee Pollen: Antioxidant Insights from FTIR, LC-MS and GC-MS Analyses

Nandhini V M¹, Priyadharshini K M¹, Thangapandiyan S¹, Thirumalai V²

¹Department of Zoology, PSG College of Arts & Science, Coimbatore 641004, Tamil Nadu, India.

²Department of Pharmacology, Rajas Dental College, Kaval Kinaru Junction, Tirunelveli 621105, Tamil Nadu, India.

*Corresponding author: nandhunandhi135@gmail.com

Abstract

Cardiometabolic disorders driven by dyslipidemia, oxidative stress and chronic inflammation, remain one of the major global health burdens demanding a safe, natural and multifunctional therapeutic alternatives. Bee pollen is widely recognized for its nutritional richness and bioactive potential. However, the metabolomic profile and cardioprotective relevance of monofloral *Cocos nucifera* bee pollen remain largely unexplored. The present study provides an integrated phytochemical and spectroscopic characterization of the cold-macerated ethanolic extract of *C. nucifera* bee pollen, with emphasis on its antioxidant and lipid-modulating potential. Preliminary phytochemical screening revealed abundant alkaloids, phenolics, flavonoids, sterols, tannins, carbohydrates and glycosides. The extract demonstrated strong antioxidant potency with an 86.7% DPPH radical inhibition, indicating effective free-radical scavenging activity. UV-Vis absorption profiles confirmed the presence of polyphenolic constituents, while FT-IR analysis revealed characteristic functional groups corresponding to hydroxyl functionality. This is due to coronary affliction with conditions such as inflammation, insulin resistance, oxidative stress, hypertension and dyslipidemia. Hypercholesterolemia or dyslipidemia is admitted by immoderate levels of cholesterol in the blood by limiting its flow which results in coronary diseases and stroke. It is a condition of lipid metabolic disorder with a cordial relationship associated with CMD (1).

Apitherapy was given thought to the most productive treatment with bees and their products. It has ancient origins: the first known prescription using honey, which aids various physical and emotional health issues. Honey bee products are considered one of the finest and oldest medications gifted by honey bees to the universe. Bee pollen is the most nourishing and balanced nutrient produced by the worker bee of the honey bee community, which has been historically used as an apitherapeutic (2). Bee pollen is an agglomerate honey bee derivative of floral pollen collected by worker bees mixed with the secretions of hypopharyngeal glands or nectar. Bee pollen loads are collected and stored by the worker's bees (*Apis spp.*). It is used as food and also for the construction of the hive, which was collected at the hive's entrance (3).

Bee pollen is used as a diet supplement due to its therapeutic action for human diseases. Some researchers also consider it mother nature's perfect food because it contains nearly all the potential sources of vital nutrients such as proteins, lipids, vitamins, minerals and carbohydrates, trace elements, and a considerable number of polyphenols, mainly flavonoids (4).

Pollen can also be distinguished as a supplementary source with a diversified complement in human health due to its enriched possessions (5). Bee pollen has highly balanced nutrients with biological activities such as anti-allergic, anti-inflammatory, immunomodulatory, appetite stimulation, anti-bacterial, anti-fungal, anti-viral, anti-arthritic, anti-mutagenic, colitis, memory, skin care, weight loss, benign prostatic hypertrophy and also alleviate pre-menstrual symptoms (1,5,6).

In such a way bee pollen collected from *Cocos nucifera* contains a rich source of protein, vitamins and nearly all the nutrients for optimal health. Also, *Cocos nucifera* possesses anthelmintic, antidotal, antiseptic, aperient, aphrodisiac, astringent, bactericidal, depurative, diuretic, hemostat, and pediculicide (7). The diverse uses of this species such as vermifuge properties, stomachic, styptic, purgative, suppurative, and refrigerant (8) are also made valuable. Moreover, it is used as a remedy for Alzheimer's disease, asthma, bronchitis, bruises, burns, calculus, colds, constipation, cough, dysentery, fever, flu, gonorrhea, jaundice, nausea, obesity, phthisis, pregnancy, rash, scabies, sore throat, stomachache, swelling, syphilis, toothache, tuberculosis, tumors, typhoid and wounds (9,10,11).

Although bee pollen from *Cocos nucifera* has vital pharmacological effects, its limited availability drops its nutritional and clinical application in the medical field. So, it is essential to prove and focus more on the beneficial aspects of bee pollen in the medical field and to give more importance to such products for the welfare of healthy beings. My present study is one such attempt for it.

Materials and Methods

Collection of sample

The sample of bee pollen loads from *Cocos nucifera* was collected directly from the bee hive of *Apis mellifera* sp. using the sterilized pollen trap from DR Honey bee farm, Aayakudi, Palani district, Tamil Nadu. Collect-

ed samples were authenticated and identified as *Cocos nucifera* from Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu.

Preparation of extract

Bee pollen loads were extracted by the process of cold maceration technique to analyze the phytochemical constituents present in them. Collected pellets were shade-dried inside the dark room for around 15 days and powdered for the process of cold maceration. The samples were immersed in ethanol for about 72 hrs inside the dark room. Eventually, the extract was double-filtered using the clean muslin cloth followed by the Whatman filter paper 110 mm. The filtrate was then condensed by open air for 24 hrs and the extracted sample was stored at 4°C for future use (12,13). The prepared *Cocos nucifera* Bee Pollen Cold-macerated Ethanolic (CNBPCE) extract was further analyzed for preliminary phytochemical screening.

Preliminary phytochemical screening

Various preliminary tests were performed in CNBPCE extract to know the presence of the phytochemicals present in them. The compounds such as alkaloids, flavonoids, sterols, terpenoids, anthraquinone, anthocyanin, proteins, phenolic compounds, quinones, carbohydrates, tannin, saponin, cardiac glucosides, glycosides, lignins, coumarins and volatile oils were ascertained (14).

DPPH anti-oxidant assay

The DPPH spectrophotometric method is one of the most widely used analyses to evaluate the antioxidant activity of drugs to measure the ability of free radical scavengers. CNBPCE extract was prepared into different concentrations and processed with DPPH solution and the absorbance was measured at 517 nm. The standard used was Ascorbic acid and these measurements were repeated and recorded.

The Percentage of Inhibition (P_i) was calculated using the formula,

$$Pi = \frac{(Ab-As) \times 100\%}{Ab}$$

Whereas 'Pi' is the percentage of inhibition, 'Ab' is the abs of control and 'As' is the abs of the sample.

UV- VIS spectroscopic analysis

CNPCE extract was subjected to UV-VIS Spectroscopic analysis to determine the compounds available. The extract was measured using a UV-VIS spectrophotometer of Perkin Elmer, USA Model: Lambda 950 using a 10mm cell, with a slit width of 2nm at room temperature. The extract was centrifuged for 10 min at 3000 rpm filtered via Whatman No. 1 filter paper and diluted to ethanol at the ratio of 1:10. The extract was examined under both visible and UV light from wavelength ranging 300-800nm for imminent examination.

FT-IR

CNPCE extract was loaded to FT-IR to elucidate the functional group present. 1mg of the pollen extract was encapsulated in 10mg of KBr pellet, for devising the translucent sample discs. KBr encapsulated pollen extract was injected and measured using Shimadzu 8400S, with a resolution of 4cm⁻¹. The spectra were recorded between the region of 4000-400cm⁻¹ in the transmittance mode at room temperature (25 ± 2 °C).

LC-MS

The classification of non-volatile compounds in the CNPCE extracts can be identified using LC-MS analysis. The sample was performed using Shimadzu CBM-20A using a PDA detector with a total run time of 30 minutes. The pump used here was binary mode with a flow rate of 0.3 ml/min and a B concentration of 10% with 0.1% formic acid and acetonitrile. The sample was injected in 51L 30 AC of autosampler system with a total injection volume of 5µl and wavelength ranges between 190 to 800 nm. The HPLC eluted was detected by MS with ESI along the maintained oven tempera-

ture at 40°C and the interface temperature of 350°C. The scanning range was between 100 to 1000 m/z with a speed of 3750/ sec. Absorbed chromatograms were matched with the library and the results were interpreted.

GC-MS

The characterization of phytochemicals and the identification of the compounds in the CNPCE extract were identified by GC-MS using GC-2010 and MS-QP 2010 plus, respectively. The sample injecting process was done with an autosampler system- 7693. The carrier gas used here was helium. The flow rate of linear velocity of 2 mins at 14.4 mL/min, with the column flow of 1.03 mL/min. The split ratio was 10.1 with the capillary column of Rxi 1MS with a length of 30 m and an internal diameter of 0.25mm and 0.25 micron of thickness was used. The Injector temperature was set at 280°C, the column was initially set at 70°C for 10 mins and held at 5°C/rate to 280°C for 10 mins. 1µl of CNPCE extract was injected with a total run time of 60 mins. The temperature of the MS Ion source and interface were 250°C and 200°C, respectively. The total event was held at the interval of 0.5 sec at the scan speed of 2000 with the start m/z of 35.00 and end m/z of 850.00. The resulting spectra of the chromatogram were compared to the mass spectral library NIST (National Institute of Science and Technology) for the identification of the eluted compounds in CNPCE extract.

Results and Discussion

Preliminary phytochemical screening

The Preliminary phytochemical screening was performed in CNPCE extract to confirm the presence of metabolites such as alkaloids, flavonoids, sterols, terpenoids, anthraquinone, anthocyanin, proteins, phenolic compounds, quinones, carbohydrates, tannin, saponins, cardiac glycosides, glycosides, lignin, coumarins and volatile oils based on the technique by Harborne method of plant analysis. The results show the presence of certain compounds as tabulated in Table 1.

Table 1. Preliminary phytochemical screening of the cold macerated ethanolic extract of *Cocos nucifera* bee pollen.

S.No	Metabolite	Test performed	Observation	Results
1	Alkaloids	Mayers test	Cream precipitate	++
2	Flavonoids	Lead acetate test	White precipitate	+
3	Sterols	Libermann test	Reddish brown ring	++
4	Terpenoids	Libermann test	Absence of green color	-
5	Anthraquinone	Borntragers test	Absence of reddish orange	-
6	Anthocyanin	HCl Test	No colour change	-
7	Proteins	Xanthoproteic	Yellow coloured	+
8	Phenolic compounds	Gelatin test	White precipitate	++
9	Quinones	Conc HCl test	No yellow precipitate	-
10	Carbohydrates	Fehling's test	Red precipitate	++
11	Tannin	Braymer's test	Bluish-green color	++
12	Saponins	Saponification	Foam formation	+
13	Cardiac glycosides	Keller-killani test	Brown ring formed	+
14	Glycosides test	Aq. NaOH test	Yellow coloured	+
15	Lignin	Labat test	No olive green colored	-
16	Coumarins	Fluorescence test	No yellow fluorescence	-
17	Volatile oils	Fluorescence test	No pink fluorescence	-

(++) Strongly present; (+) Present; (-) Absent

DPPH anti-oxidant assay:

The DPPH assay was performed with certain concentrations like 100, 200, 400, 800 and 1000 $\mu\text{g/ml}$ for both the sample and the standard drug. The standard used was ascorbic acid, and the abs of the UV Spectrophotometer were noted at the wavelength of 517 nm.

The Inhibitory percentage of the CNBPCE was compared with the standard as tabulated in Table 2. It shows that the % Inhibition of CNBPCE extract was $86.7 \pm 0.15\%$ at 1000 $\mu\text{g/ml}$ concentration which was slightly lower when compared to that of the standard with $95.7 \pm 0.15\%$ at particular concentration.

Table 2. 2,2-Diphenyl-1-picrylhydrazyl antioxidant assay for the cold-macerated ethanoic extract of *Cocos nucifera* bee pollen

S. No	Concentration ($\mu\text{g/ml}$)	Standard (% Inhibition)	CNPCE (% Inhibition)
1	100	62.1 ± 0.17	50.8 ± 0.09
2	200	70.1 ± 0.32	58.8 ± 0.09
3	400	83.6 ± 0.13	78.5 ± 1.06
4	800	90.1 ± 0.03	81.2 ± 0.12
5	1000	95.7 ± 0.15	86.7 ± 0.15

Standard: Ascorbic acid

Values are expressed in mean \pm SD (n=3) statistically significant test for comparison by ANOVA followed by Dunnett's t-test which was compared between the standard ascorbic acid and the extract CNBPCE.

UV- VIS spectroscopic analysis:

The UV-Vis spectroscopic analysis detects the maximum number of peaks between the wavelength of 440 to 240 nm as shown in Figure 1 and Table 3.

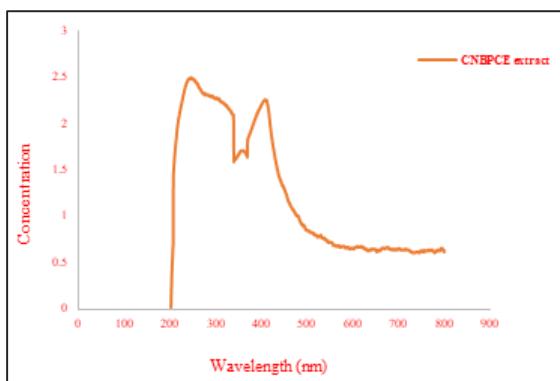


Figure 1. UV-Vis spectra of the cold-macerated ethanolic extract of the *Cocos nucifera* Bee pollen.

Table 3. Characterization using Ultraviolet-Visible spectroscopic analysis of the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen

S.No	Wavelength (nm)	Abs
1	446.50	1.34
2	412.00	2.25
3	410.50	2.26
4	408.00	2.26
5	391.00	2.12
6	355.50	1.71
7	349.50	1.67
8	324.00	2.20

9	308.00	2.27
10	303.50	2.28
11	301.50	2.28
12	300.00	2.28
13	290.00	2.30
14	286.00	2.31
15	277.50	2.32
16	276.50	2.32
17	261.50	2.43
18	255.00	2.47
19	246.50	2.50
20	242.5	2.49

FT-IR:

CNBPCE extract was characterized with FT-IR for the identification of compounds with the help of the resulting peaks as shown in Figure 2. The peaks were detected along with the area and intensity which can be used for the conformation of functional groups and compounds present in the sample as tabulated in Table 4. The Peaks were ascertained at 3327.32, 2974.33, 2879.82, 1423.51, 1379.15, 1087.89, 1045.45, 879.57 cm^{-1} with their respective area and intensity.

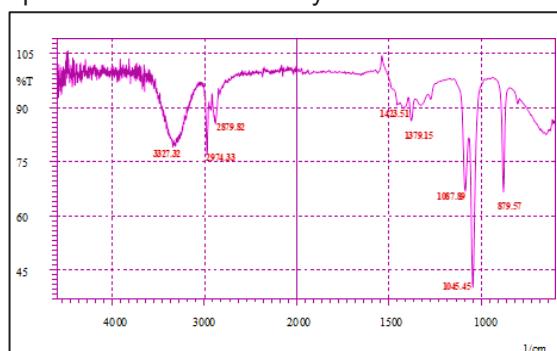


Figure 2. FT-IR peaks of the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen

Table 4. Characterization using Fourier Transform- InfraRed spectroscopic analysis of the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen

S.No	Peak (cm ⁻¹)	Area (%)	Intensity	Functional group	Compounds
1	3327.32	1.11	79.83	-C=C-H:C-H stretch	Alkynes
2	2974.33	3.02	77.02	C-H stretch	Alkanes
3	2879.82	1.04	85.55	C-H stretch	Alkanes
4	1423.51	0.83	90.02	C-C stretch	Aromatic
5	1379.15	1.64	86.43	C-H rock	Alkanes
6	1087.89	5.39	66.74	C-O stretch	Alcohol, Acid, Ester
7	1045.45	9.78	40.11	C-O stretch	Alcohol, Acid, Ester
8	879.57	3.41	66.67	C-H oop	Aromatic

LC-MS:

LC-MS eluted the major non-volatile compounds present in CNBPCE extracts using Shimadzu CBM-20A using a PDA detector. With the total run time of 30 mins 8 major positive peaks were detected with their specific retention time, base peaks and mass peaks. The compounds detected were dihexosylquercetin, 5-O-caffeooyl shikimic acid, 6b-naltrexol 3-O-b-D-glucuronide, leukotriene D4, ornithine, xanthoangelol and quercitrin with the base peaks of 625, 659, 518, 496, 413, 391 and 756, respectively as shown in table 5 & 7 and figure 3.

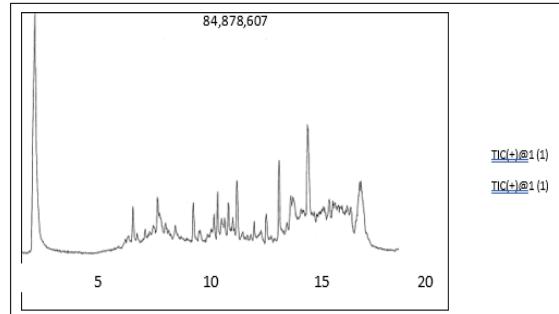


Figure3. LC-MS Chromatogram of the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen

Table 5. Phytochemical constituents detected in the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen using Liquid Chromatography- Mass Spectroscopy analysis

GC-MS

To specify the compounds, present in CNBPCE extract the sample was subjected to GC-MS analysis. The sample was performed using GC-2010 and MS-QP 2010+. From the total run time of 60 mins, 28 eluted compounds were identified along with peak number, peak area and retention time as shown in Figure 4 and Table 6. The dominant compounds such as linolenic acid, linolenyl alcohol, methyl and ethyl linolenate, 9,12- Octadecadienoic acid, ethyl ester, palmitic acid, L (+)-Ascorbic acid, 2,6-dihexadecanoate, pentadecyclic acid, 5-hydroxymethylfurfural, ascabiol, n-tetrapentaccontane,

bicycyl, n-tetrapentaccontane, hexatriacontane, palmitic acid; beta monoglyceride, monostearin, stearic acid, 1,2cyclopantanenedione, sitosterol, linolein-1-mono, 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6 methyl, 1-1-dimethyl tetradecyl hydrosulfide, octatriacontyl pentafluoro propionate, canophyllal, stigmasta-5-24 (28)dien-3-ol-3beta, tocopherol, hexatriacontane and furanmethanol were identified. Table 7 interprets the nature of the dominating phytoconstituents and their desired pharmacological activities. Figure 5 demonstrates the total percent of functional groups depicted from both GCMS and LCMS.

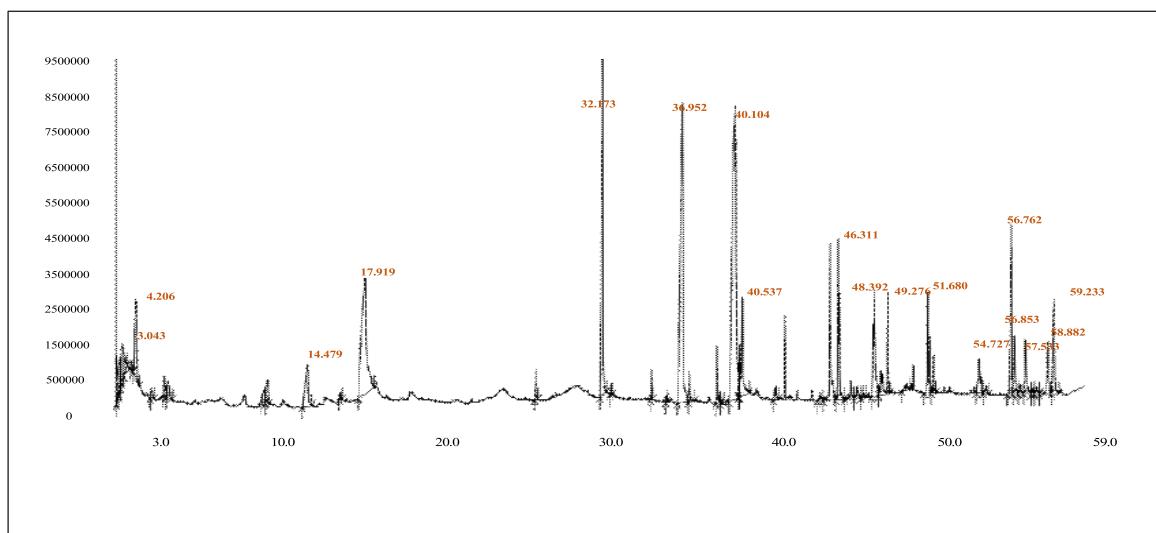
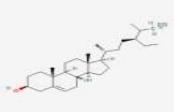
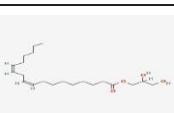
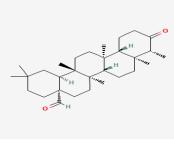
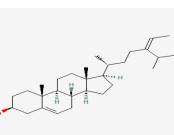
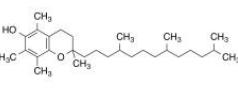







Figure 4. GC-MS: Chromatogram of the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen

Table 6. Phytochemical constituents detected in the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen using Gas Chromatography-Mass Spectroscopy analysis

No s.	Compound Name/ IUPAC	Peak No.	Peak Area (%)	Rate time (min)	Mol. formula	Mol. weight (g/mol)	Chemical structure
1	Linolenic acid / (9Z,12Z,15Z)-octadeca-9,12,-15-trienoic acid	24	19.73	40.104	C₁₈H₃₀O₂	278.40	
2	Linolenyl alcohol / (9E,12E,15E)-octadeca-9,12,-15-trien-1-ol	24	19.73	40.104	C₁₈H₃₂O	264.40	
3	Methyl linolenate / methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate	24	19.73	40.104	C₁₉H₃₂O₂	292.50	
4	Ethyl linolenate / ethyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate	24	19.73	40.104	C₂₀H₃₄O₂	306.50	
5	9,12-Octadecadienoic acid, ethyl ester / ethyl (9E,12E)-octadeca-9,12-dienoate	24	19.73	40.104	C₂₀H₃₆O₂	308.50	
6	Palmitic acid / hexadecanoic acid	20	12.72	36.952	C₁₆H₃₂O₂	256.40	

7	L-(+)-Ascorbic acid, 2,6-di-hexadecanoate / ((2S)-2-((2R)-4-hexadecanoxy-3-hydroxy-5-oxo-2H-furan-2-yl)-2-hydroxyethyl) hexadecanoate	20	12.72	36.952	$C_{38}H_{68}O_8$	652.90	
8	Pentadecylic acid / pentadecanoic acid	20	12.72	36.952	$C_{15}H_{30}O_2$	242.40	
9	5-Hydroxymethylfurfural / 5-(hydroxymethyl)furan-2-carbaldehyde	14	10.43	17.919	$C_6H_6O_3$	126.11	
10	Ascabiol / benzyl benzoate	16	8.53	32.173	$C_{14}H_{12}O_2$	212.42	
11	n-Tetrapentaconate / tetrapentaconate	41	3.99	56.762	$C_{54}H_{110}$	759.40	
12	Bicetyl / dotriacantane	41	3.99	56.762	$C_{32}H_{66}$	450.90	
13	n-Tetraconatane / tetracontane	41	3.99	56.762	$C_{40}H_{82}$	506.10	
14	n-Hexatriacontane / hexatriacontane	34	3.54	48.392	$C_{36}H_{74}$	507.01	
15	Palmitic acid-β- monoglyceride/ 1,3-dihydroxypropan-2-yl hexadecanoate	30	3.46	46.311	$C_{19}H_{38}O_4$	330.50	
16	2- Monostearin / 2,3-dihydroxy propyl octadecanoate	30	3.46	46.311	$C_{21}H_{42}O_4$	358.60	
17	Stearic acid / octadecanoic acid	26	3.14	40.537	$C_{18}H_{36}O_2$	284.50	

18	1,2-Cyclopentanedione / cyclopentane-1,2-dione	6	2.66	4.206	$C_5H_6O_2$	98.10	
19	Gamma-sitosterol / (3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl,2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta(a)phenanthren-3-ol	48	2.59	59.233	$C_{29}H_{50}O$	415.70	
20	Linolein,1-mono / 2,3-dihydroxypropyl (9Z,12Z)-octadeca-9,12-dienoate	35	2.30	49.276	$C_{21}H_{38}O_4$	354.50	
21	4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6 methyl / 3,5-dihydroxy-6-methyl-2,3-dihydroxy-4H-pyran-4-one	12	2.20	14.479	$C_6H_8O_4$	144.12	
22	1,1-Dimethyltetradecyl hydroxylsulfide / 2-methylpentadecane-2-thiol	37	2.12	51.680	$C_{16}H_{34}S$	258.5	
23	Octatriacontyl pentafluoropropionate / octatriacont-	37	2.12	51.680	$C_{41}H_{77}F_5O_2$	697.01	
24	Canophyllal / (4aS,6aS,6aR,6bS,8aS,9R,12aS,14aS,14bS)-2,2,6a,6a,8a,9,14a-heptamethyl-10-oxo-3,4,5,6,6b,7,8,9,11,12,12a,13,14,14b,te-tradecahydro-1H-picene-4a-carbaldehyde	47	1.58	58.882	$C_{30}H_{48}O_2$	440.70	
25	Stigmasta-5,24(28)dien-3-ol-3β / (3S,10R,13R)-10,13-dimethyl-17-((E,2R)-5-propen-2-ylhept-5-en-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta(a)phenanthren-3-ol	42	1.53	56.853	$C_{29}H_{48}O$	412.71	
26	α-Tocopherol / (2R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-3,4,dihydrochromen-6-ol	44	1.37	57.533	$C_{29}H_{50}O_2$	430.70	

27	Hexatriacontane / hexatriacontane	39	1.22	54.727	$C_{36}H_{74}$	507.00
28	3- Furanmethanol / furan-3-ylmethanol	1	1.08	3.043	$C_5H_6O_2$	98.10	

Table 7. Pharmacological activity of the detected phytochemical constituents from the cold-macerated ethanolic extract of *Cocos nucifera* bee pollen using LCMS & GCMS

S.No	Compound Name	Compound Nature	Pharmacological activity
1	Linolenic acid	Fatty acid	Anti-inflammatory (15,16), Anticarcinogenic (17,18), Immune modulation (19), Antimicrobial (20), Anti-oxidant (18,21), Decreases cardiovascular disease, decreases arrhythmias, decreases thrombosis, decreases serum triglycerides level, Increases vascular endothelial level, decreases inflammation (16,22), Anti-arthritis, Antiandrogenic, Hepatoprotective, Antieczemic, 5 α -reductase Inhibitor, Hypocholesterolemic, Anti-acne, antihistaminic (23,24,25).
2	Linolenyl alcohol	Alcohol	Anti-oxidant, Hypocholesterolemic (26,27,28), Antibacterial against B.subtilis, S.aureus (27,28), Antiradial, Antitumour, Antidepressant, Anti-inflammatory (29), Antianxiety (30), Anti-carcinogenic, (29,31), Hepatoprotective, Anti-arthritis, surpass blood brain barrier (29), Antimicrobial (32), Inhibits protein tyrosine phosphatase (33), Antibacterial, Antifungal (34).
3	Methyl linolenate	Fatty esters	Antimicrobial (35), Anti-carcinogenic, Hepatoprotective, Anti-arthritis (35,36), Anti-asthma, Diuretic (35), Anti-inflammatory, Hypocholesterolemic, Nematicide, Insectifuge, Anti-histaminic, Anti-eczemic, Anti-acne, 5 α -reductase Inhibitor, Antiandrogenic, Anticoronary (36).
4	Ethyl linolenate	Fatty esters	Antibacterial against E.coli, P.aeruginosa, B.subtilis, S.aureus (37), Hypocholesterolemic, Nematicide, Anti-arthritis, Hepatoprotective, 5 α -reductase Inhibitor, Anti-histaminic, Insectifuge, Anti-coronary, Anti-eczemic, Antiacne, Anti-androgenic (35,38,39).
5	9,12- Octadecadienoic acid, ethyl ester	Fatty esters	Hypocholesterolemic, Nematicide, Anti-arthritis, Hepatoprotective, 5 α -reductase Inhibitor, Anti-androgenic, Anti-microbial, Anti-acne, Anti-histaminic, Insectifuge, Anti-coronary, Anti-eczemic (24,35,40,41).
6	Palmitic acid	Fatty acids	Anti-quorum sensing against A.baumannii (42), Anti-inflammatory (43,45), Anti-oxidant, Anti-androgenic (43,44,35), Hypocholesterolemic, Nematicide, 5 α -reductase Inhibitor (35,43,44,45), Hemolytic (43), Treats Rheumatic symptoms, Mosquito larvicide (43), Pesticide (43,35), Anti-fungal (44), Anti-malaria (44,45), Lubricant, Antipsychotic (35), Haemolithic, Anti-viral, Anticancer (45).

7	L-(+)-Ascorbic acid, 2,6-dihexadecanoate	Fatty esters	Wound healing (46,51,52), Vitamin C Immunomodulator (46), Anti-tumour (46,47,49,52), Anti-bacterial (46,47,52), Anti-oxidant (46,48,49,50,51), Anti-microbial (49), Reduces triglycerides, protects LDL against peroxidation and inhibits the progression of atherosclerosis (50), Anti-inflammatory, Anti-scorbutic, Anti-nociceptive, Antimutagenic (51), Antiallergic, Anti-anemic, Anti-anxiety, Antibronchitis, Anti-cataract, Anti-coagulant, Anticonvulsant, Anti-diabetic, Anti-diarrheic, Antifatigue, Anti-fertility, Anti-gastric, Antimalarial, Antistress, Anti-ulcer, Anti-atherosclerotic, Anti-cold, Anti-glaucomic, Anti-hepatic, Antihypertensive, Antiplague, Antiproliferant, Antiprotozoal, Antiseptic, Antistroke, Antitubercular, CNSS stimulant, Chelator, Chemopreventive, Cytochrome P450 Inducer, Deodorant, Hypolipidimic, Neuroprotective, Neurotransmitter, Termiticide, Anti-viral (53).
8	Pentadecylic acid	Fatty acid	Anti-asthmatics, Anti-abortive (54), Anti-bacterial, Anti-allergic (55), Lubricants, Adhesive agents (56), Anti-oxidant (57), Anti-cancer (22,54,58).
9	6-Hydroxymethyl-furfural	Aldehydes	Anti-oxidant (59,62,64,65), Antiproliferative (59,64), Antibiofilm (64), Preservative (60), Antimicrobial (60,64), Antifungal (63,67), Antibacterial (61,63,65,67), Pesticide, Cosmetics (67), Anti-allergenic, Anti-diabetic (66).
10	Ascabiol	Phenols	Anti-parasitic, Antifungal, Antibacterial, Fragrance ingredients, Pesticides, Solvents (68), Spasmolytic, Calmodulin inhibitor, tyrosinase inhibitor, treatment of angina pectoris and scabies (69).
11	n-Tetrapentaconate	Fatty esters	Antibacterial (70), Anti-inflammatory (71,74), Anti-oxidant (71,72), Antimicrobial (72,75), Antimutagenic (72), Hydroxylation of the liver enzyme during phase 1 metabolism (73), Hair growth, uric acid production, arachidonic acid inhibitor in the human body, Anticancer (73).
12	Bicetyl	Ketones	Antimicrobial (76,77), Anti-oxidant (77,79), Antispasmodic (77,81), Antibacterial (77,79), Antiviral (77,80), Antifungal (78,81), Anti-inflammatory (78), Cytotoxic activity against hepatocarcinoma cell line (78,80).
13	n-Tetraconatane	Hydrocarbons	Antimicrobial (76,86), Anti-inflammatory (82,83), Analgesic (82,83), Antibacterial (84,85), Antioxidant (84), Anti-tumour, Antidiabetic (73).
14	n-Hexatriacontane	Hydrocarbons	Anti-inflammatory, Analgesic (87), Radical scavenger (87,82), Anti-oxidant (87,88,89), Antimicrobial (88,90), Antidepressant, Hypocholesterolemic (90).
15	Palmitic acid- β -monoglyceride	Fatty esters	Antibacterial against E.coli (91,93), Biomarker of type 2 diabetes, Visco elastic property, Non-ionic surfactant for vaccines, Liquid crystal delivery system (92), Sugar-phosphate inhibitor, Lipid metabolism regulator, Anti-infective, Anti-inflammatory, Intestine histamine release inhibitor, Antiprotozoal (93).

16	4- Monostearin	Fatty esters	Emulsification (94), Anti-static, Anti-fogging (95), Increased drug permeability, Self-emulsifying drug delivery system (96).
17	Stearic acid	Fatty acids	Anti-oxidant (97,98), Antidiabetic (97), Neuroprotective (97), Anti-tumour (99,101), Cytotoxicity (99), Antimicrobial (98, 100), Anti-inflammatory (98,103), Diuretic activity (98), Antibacterial (44,101), Antifungal (56,101), Antiviral against Measles and Parainfluenzavirus (102), Anti-arthritis (103), Hypocholesterolemic (56,103), Anticonvulsant, Antianalgesic, Anti-asthmatic, Anti-amoebic, Anti-gastric, Anti-malaria, treat obesity (104), Cosmetic, 5 α -reductase Inhibitor, Flavor (85).
18	1,2-Cyclopentanedione	Ketones	Prevention of gastrointestinal tumor (105), Anti-bacterial (106), Anti-diabetic (107), Anti-oxidant (108).
19	Gamma-sitosterol	Sterols	Anti-diabetic (109,110), Hypocholesterolemic activity (109,110), Cytotoxic against colon and liver cancer cell line (109), Extrinsic apoptotic pathway in human lung and breast adenocarcinoma cell (110), Anti-cancerous (49,111), Hepatoprotective (49,111), Biomarker for cancer prevention (49), Anti-microbial, Anti-arthritis, Anti-asthma (111).
20	Linolein,1-mono	Fatty esters	Treatment of breast cancer (112), Hypocholesterolemic activity, Anti-eczemic, Nematicide, Hepatoprotective, Anti-oxidant, Anti-acne, Haemolytic, Pesticide, Flavour (113).
21	4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl	Ketones	Antifungal (114,116), Inhibition of colon cancer cell growth (115), Anti-oxidant (115,116,117), Anti-microbial, Automative nerve activity, Anti-inflammatory, Anti-proliferative, Anti-cancer, Anti-diabetic, Proapoptotic effects, Cytotoxicity, Antipyretic, Anthelmentic, Anti-tumour, Antibronchitis, Anti-tuberculosis, Dysepsia, Constipation, Anemia, Throat disease, Elephantiasis, Anti-diabetic, Anti-diarrhoeal (117), Anti-arthritis (117,118), Anti-asthma (117,118).
22	1,1-Dimethyltetradecyl hydrosulfide	Organosulfur	Anti-tumour, Anti-fungal, Insecticidal (43), Enzyme activators (119), Anti-microbial (120), Anti-oxidant (43,79,80,121), Antibacterial (79,80,121).
23	Octatriacontyl pentafluoro propionate	Fatty esters	Anti-viral drugs in the treatment of cancer (122,124), Antibacterial (123), Anti-MDR (123), and Antiviral against Covid-19 (124).
24	Canophyllal	Terpenoids	Anti-inflammatory, Antioxidant, Hypocholesterolemic (125,126)
25	Stigmasta-5,24(28)-dien-3 β -ol	Sterols	Antidiabetic (127), Synthetic progesterone (56,83), Anti-hepatotoxic, Cancer prevention (56,129,130), Hypocholesterolemic, Anti-viral (56,129), Anti-oxidant (56,128,129,130), Antosteopathic, Anti-inflammatory, Anti-photoaging, Immunomodulatory, Antineurological, Algicidal, Anti-obesity, Antimicrobial (130).
26	α -Tocopherol	Phenols	Antioxidant (131,132), Anti-inflammatory, Antibacterial (133), Anti-bronchitic, Anti-coronary, Anti-arthritis, Hepatoprotective, Antimicrobial, Antiasthma (134), Anti-cancer (134,135).

27	Hexatriacontane	Hydrocarbons	Anti-inflammatory, Analgesic activity, Radical Scavenger (87), Anti-oxidant (87,136,137).
28	5- Furanmethanol	Alcohols	Anti-bacterial (106), Anti-viral (106,138,139), Malignancy preventive (118), Anti-fungal (138), Moderate toxic, Flavouring agents, the aroma of tea, coffee, etc., Adhesive agents, Anti-oxidants (140), Eye mucous irritation, abdominal pain, Diarrhoea, Headache, Vomiting (141).
29	Dihexosylquer-cetin	Flavonoids	Antioxidant, Anti-inflammatory, Antimicrobial and Antiprolifera-tive (142)
30	5-O-Caffeoylshi-kimic acid	Phenols	XOD Inhibitor (143), Strong activity related to DPPH, ABTS (144), uricacid lowering effects in hyperuricemic (145)
32	6b-Naltrexol 3-O- <i>b</i> -D-Glucuro-nide	Alkaloids	No activity reported
34	Ornithine	Amino acid	Urea cycle/ ammonia detoxification (146), Precursor for polyamines and amino acids (147), Metabolic regulation and homeostasis (148)
35	Xanthoangelol	Flavonoids	Anticancer / Antitumor / Antimetastatic Activity (149)
36	Quercitrin	Flavonoids	Antioxidant activity, Antiinflammatory and immunomodulatory effects, Antiparasitic, Antimetastatic and Anticancerrelated activity (150)

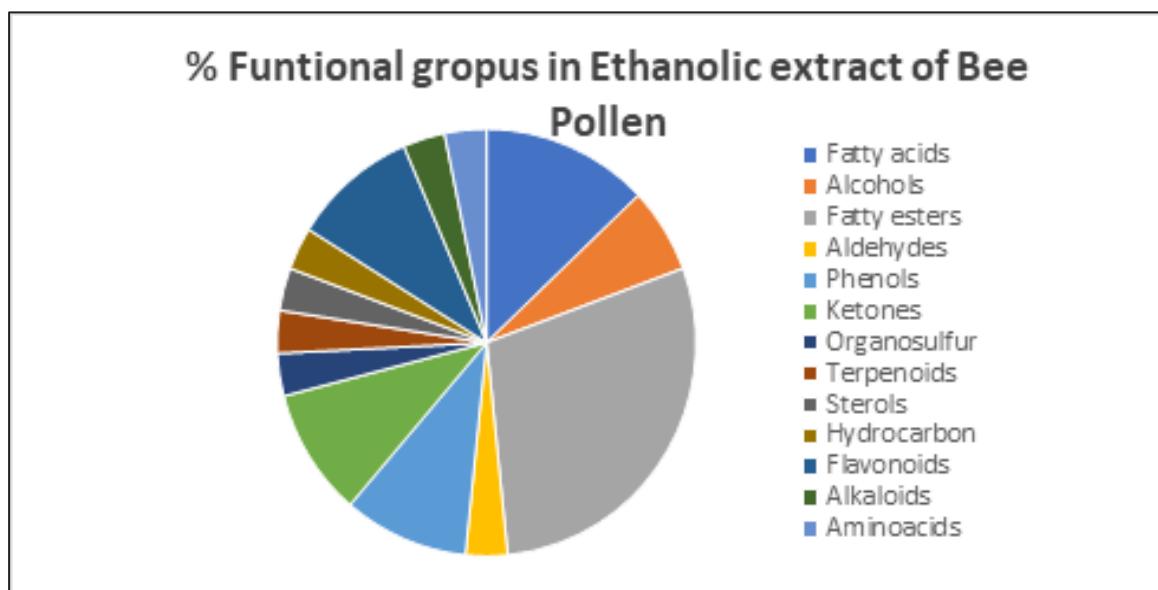


Figure 5. % of the total Functional group detected from both GCMS and LCMS

Phytochemical profiling and cardiometabolic potential of *Cocos Nucifera* Bee Pollen: Antioxidant insights from FTIR, LC-MS and GC-MS analyses

Discussion

Traditional medicine from natural sources is adopted in the medical field to prevent and treat abundant life-threatening diseases owing to their systematic therapeutic potential. Noticeably, Bee pollen is one of the natural sources aided by honey bees with an enormous quantity of chemical compounds and eluted possessions of pharmacological activities. Therefore, the bee pollen from *Cocos nucifera* was collected manually using the pollen trap. The purpose is to identify and isolate the pharmacologically important phytochemicals and to elucidate the medicinal values present in them. For the process of extraction, the cold maceration technique was employed to acquire the pharmacologically important phytochemicals without the loss of thermolabile compounds.

The present investigation provides a comprehensive biochemical profile of *Cocos nucifera* bee pollen, revealing a rich array of metabolites with strong antioxidant, anti-inflammatory, and lipid-regulating potential. The preliminary phytochemical screening confirmed the presence of key secondary metabolites, including alkaloids, sterols, phenolics, flavonoids, tannins and glycosides compounds that are well recognized for their physiological relevance in maintaining metabolic balance and protecting against oxidative and inflammatory disorders. The abundance of these compounds supports the longstanding use of bee pollen as a natural therapeutic supplement and underscores the unique biochemical richness of pollen derived specifically from *C. nucifera*.

The antioxidant capacity of the extract was strongly supported by the DPPH assay, where the inhibition reached nearly the activity of the standard antioxidant. This indicates substantial free radical scavenging ability, which is critical given that oxidative stress is a major driver of hypercholesterolemia, endothelial dysfunction and atherosclerotic plaque development. The high degree of scavenging suggests that the phenolic and flavonoid constituents de-

tected in both the UV-Vis and FTIR analyses actively contribute to the neutralization of reactive oxygen species. The UV-Vis spectral pattern, characterized by broad absorptive bands typical of conjugated aromatic systems, further validates the presence of polyphenolic structures commonly associated with strong antioxidant behavior. FT-IR profiles showing the prevalence of hydroxyl, carbonyl and aromatic groups reinforce this interpretation by indicating the presence of phenolic acids, flavonoids, alcohols, esters and alkanes in the extract.

LCMS analysis revealed eight major non-volatile phytoconstituents, several of which such as flavonoid glycosides, caffeoyl derivatives and prenylated chalcones are well known for their roles in reducing oxidative burden, suppressing lipid peroxidation and modulating inflammatory pathways. Flavonoid glycosides identified in the extract are particularly noteworthy due to their established roles in preventing LDL oxidation, enhancing endothelial function and attenuating metabolic disturbances. Compounds such as caffeoylshikimic acid and xanthoangelol contribute additional anti-inflammatory and lipid-lowering effects through inhibition of oxidative signaling and suppression of inflammatory mediators. The detection of amino acid derivatives such as ornithine suggests auxiliary metabolic benefits, particularly in nitrogen metabolism and endothelial regulation.

GCMS analysis unveiled a dominant presence of polyunsaturated fatty acids, fatty acid esters, plant sterols, hydrocarbons and lipid-soluble antioxidants. The high abundance of linolenic acid, methyl and ethyl linolenate and linolenyl alcohol is significant, as these compounds are central to the regulation of lipid metabolism, reduction of serum triglycerides, improvement of endothelial function and attenuation of inflammatory responses. These fatty acids are widely recognized for lowering the risk of cardiovascular complications by modulating cholesterol transport and enhancing membrane fluidity. The detection of plant sterols, including γ -sitosterol and stigmasta-based sterols, pro-

vides further mechanistic insight into the hypocholesterolemic potential of the extract, as sterols inhibit intestinal cholesterol absorption through competitive displacement. The presence of tocopherol, a potent lipid-soluble antioxidant, enhances the extract's protective capability against lipid peroxidation and oxidative damage within vascular tissues.

Several additional compounds identified including pentacyclic acid, palmitic acid derivatives, benzyl benzoate, long-chain hydrocarbons and hydroxymethylfurfural which contribute complementary antimicrobial, anti-inflammatory and antioxidant functions. Collectively, the metabolomic profile indicates a synergistic network of bioactive molecules acting across multiple biochemical pathways associated with cardiometabolic regulation.

Taken together, the convergence of findings from phytochemical screening, antioxidant assays, UV-Vis and FT-IR spectroscopy along with LCMS and GCMS analyses demonstrates that *Cocos nucifera* bee pollen is a potent reservoir of pharmacologically significant compounds. The extract exhibits strong free radical scavenging potential, contains diverse lipid-modulating constituents and includes multiple anti-inflammatory and antioxidant molecules known to support cardiovascular health. The integration of these bioactivities suggests that *C. nucifera* bee pollen may serve as a highly effective natural agent for managing dyslipidemia, mitigating oxidative stress and improving overall cardiometabolic function.

The results presented in this study therefore not only validate the therapeutic relevance of *C. nucifera* bee pollen but also contribute novel insights into its chemical composition and biological potential. These findings justify further in vivo exploration and clinical validation to delineate dosage, bioavailability, synergistic interactions among compounds and long-term safety. With its broad spectrum of beneficial phytochemicals and strong antioxidant and lipid-regulating properties, *C. nucifera* bee pollen

holds considerable promise as a natural adjunct in the prevention and management of cardiometabolic disorders.

Conclusion

The present study demonstrates that *Cocos nucifera* bee pollen is a rich source of pharmacologically significant phytochemicals with strong antioxidant and lipid-regulating potential. The extract exhibited substantial free radical scavenging activity, confirming its ability to mitigate oxidative stress, a key factor in cardiometabolic disorders. Spectroscopic analyses revealed abundant phenolic, flavonoid and lipid-derived functional groups, supporting its biochemical complexity. LCMS profiling identified several bioactive non-volatile metabolites contributing to anti-inflammatory and hypolipidemic effects. GCMS analysis further highlighted the dominance of polyunsaturated fatty acids, sterols and lipid antioxidants crucial for cholesterol regulation. The synergistic action of these compounds suggests meaningful therapeutic potential in managing dyslipidemia and cardiometabolic dysfunctions. The findings validate the traditional relevance of bee pollen and emphasize the uniqueness of the *C. nucifera* floral source. This study also adds new metabolomic insights for future natural-product-based interventions. Further in vivo and clinical studies are warranted to evaluate its efficacy, safety and bioavailability. Overall, *C. nucifera* bee pollen emerges as a promising natural candidate for cardiometabolic health management.

Abbreviation

1. % : Percentage
2. °C : Degree Celsius
3. µg : microgram
4. µl : microlitre
5. Ab : Absorbance of Control
6. Abs : Absorbance
7. ANOVA : Analysis Of Variance
8. As : Absorbance of the Extract
9. cm : Centimeter

10.	CNBPCe extract : Cocos nucifera Bee Pollen
	Cold-macerated Ethanolic extract
11.	CNSS System : Caudal Neuro Secretory
12.	DPPH : 2,2-diphenyl-1-picrylhydrazyl
13.	FT-IR : Fourier Transform- InfraRed
14.	g : gram
15.	GC-MS : Gas Chromatography-Mass Spectrometry
16.	hrs : Hours
17.	KBr : Potassium Bromide
18.	kPa : Kilopascal
19.	m : metre
20.	m/z : Mass to Charge ratio
21.	min : Minute
22.	mL : Millilitre
23.	mm : Millimeter
24.	NIST : National Institute of Science and Technology
25.	nm : Nanometer
26.	Pi : Percentage of Inhibition
27.	rpm : Revolution per minute
28.	SD : Standard Deviation
29.	TBA : Thiobar Bituric Acid
30.	UV-VIS : UltraViolet-Visible Spectrophotometer

Acknowledgement

We acknowledge our sincere thanks to Central Research Lab, PSG College of Arts & Science, Coimbatore for the work with GC-MS and Mr. Karukuvvelraja, Genolites Research and Development Laboratory, Saravanampatti, Coimbatore for providing me with a laboratory facility.

Author contribution

Nandhini Manickam: Conceptualization, methodology, writing original draft

Priydarshini K. M: Supervision, editing of original draft, framed concepts

Thangapandiyan S: Formal analysis,

Thirumalai V: Methodology analysis, framing concepts

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding details

This research has been supported by the "Savitribai Jyotirao Phule Fellowship for Single Girl Child" from the Universal Grants Commission, New Delhi (UGCES-22-OB-TAM-F-SJSGC-8474).

Data availability statement

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Reference

1. Langhi, C., Vallier, M., Bron, A., Otero, Y.F., Maura, M., Le Joubiou, F., Blomberg, N., Giera, M., Guigas, B., Maugard, T. and Chassaing, B., 2024. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. *Frontiers in Cardiovascular Medicine*, 11, p.1342388.
2. Gálik B, Bíro D, Šimko M, Juráček M, Capcarová M, Kolesárová A, Rolinec M, Tománek R, Kanka T. The effect of dietary bee pollen intake on growth performance and biochemical indicators of rats. *Acta Veterinaria Brno*. 2016 Mar 20;85(1):99-104.
3. De Florio Almeida J, dos Reis AS, Heldt LF, Pereira D, Bianchin M, de Moura C, Plata-Oviedo MV, Haminiuk CW, Ribeiro IS, da Luz CF, Carpes ST. Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated

sausages. *LWT-Food Science and Technology*. 2017 Mar 1;76:299-305.

4. Khalifa SA, Elashal MH, Yosri N, Du M, Musharraf SG, Nahar L, Sarker SD, Guo Z, Cao W, Zou X, Abd El-Wahed AA. Bee pollen: Current status and therapeutic potential. *Nutrients*. 2021 May 31;13(6):1876.
5. Campos MG, Anjos O, Chica M, Campoy P, Nozkoval J, Almaraz-Abarca N, Barreto LM, Nordi JC, Estevinho LM, Pascoal A, Paula VB. Standard methods for pollen research. *Journal of Apicultural Research*. 2021 Aug 8;60(4):1-09.
6. Münstedt K, Voss B, Kullmer U, Schneider U, Hübner J. Bee pollen and honey for the alleviation of hot flushes and other menopausal symptoms in breast cancer patients. *Molecular and clinical oncology*. 2015 Jul 1;3(4):869-74.
7. Ahuja SC, Ahuja U, Ahuja S. Coconut-History, Uses, and Folklore. *Asian Agri-History*. 2014 Jul 1;18(3).
8. Duke JA, Wain KK. Medicinal plants of the world. Computer index with more than. 1981;85(000):3.
9. Fernando WM, Martins IJ, Goozee KG, Brennan CS, Jayasena V, Martins RN. The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action. *British Journal of Nutrition*. 2015 Jul;114(1):1-4.
10. Edem GD, Ekanem AU, Mbadugha CC. Ameliorating effect of coconut water on the epithelium and gastric goblet cells of albino wistar rats induced with castor oil. *Int J Biol Res*. 2016;1(4):22-8.
11. Udayan PS, Balachandran I. Medicinal plants of Arya Vaidya Sala: 2009.
12. Liang CY, Fu H, Li WL, Xia B, Wu JL. Comparison of different extraction methods of volatile oil from *Mentha haplocalyx* Briq.,. *Lishizhen Med Mater Med Res* 2007;18:2085-6.
13. Du ZX, Wu HE, Li FY, Guo M, Wu PC, Gong SJ. Chemical constituents of volatile oil from *Porella setigera* (steph.) Hatt.,. *Lishizhen Med Mater Med Res* 2010;21:336-8.
14. Harborne AJ. *Phytochemical methods a guide to modern techniques of plant analysis*. Springer science & business media; 1998 Apr 30.
15. Putera, H.D., Doewes, R.I., Shalaby, M.N. et al. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. *Nutr Metab (Lond)* 20, 35 (2023). <https://doi.org/10.1186/s12986-023-00758-9>
16. Zhao, G., Etherton, T.D., Martin, K.R., West, S.G., Gillies, P.J. and Kris-Etherton, P.M., 'Dietary Linolenic Acid Reduces Inflammatory and Lipid Cardiovascular Risk Factors in Hypercholesterolemic Men and Women'. *The Journal of Nutrition*, 134: 2991-2997 (2004).
17. Dachev, M.; Bryndová, J.; Jakubek, M.; Moučka, Z.; Urban, M. The Effects of Conjugated Linoleic Acids on Cancer. *Processes* 2021, 9, 454. <https://doi.org/10.3390/pr9030454>.
18. Herrero, M., Ibanez, E., Cifuentes, A., Reglero, G. and Santoyo, S., *Dunaliella salina* microalga pressurized extracts as potencial antimicrobials. *Jurnal of Food Protection*, 69: 2471–2477 (2006).
19. Wanten GJ, Calder PC. Immune modulation by parenteral lipid emulsions. *The American journal of clinical nutrition*. 2007 May 1;85(5):1171-84.
20. Tekale SU, Kauthale SS, Ingle RD, Ubale SB, Deshmukh SU, Ameta KL, Pawar RP. Natural coumarin motifs: Anticancer

agents. *Natural heterocycles*.:165.

21. Pinto, M.E.A., Araujo, S.G., Morais, M.I., Nivea, P.S., Lima, C.M., Rosa, C.A., Siquera, E.P., Johann, S. and Lima, L.A.R.S., Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. *Anais da Academia Brasileira de Ciências*, 89(3): 1671-1681 (2017).

22. Shawer EE, Sabae SZ, El-Gamal AD, El-saied HE. Characterization of Bioactive Compounds with Antioxidant Activity and Antimicrobial Activity from Freshwater Cyanobacteria. *Egyptian Journal of Chemistry*. 2022 Sep 1;65(9):723-35.

23. Jabeen, Mehreen, Muhammad Uzair, Farhan Siddique, Muhammad Shoaib Khan, Muhammad Hanif, Ahmad Mohammad Salamatullah, Hiba-Allah Nafidi, and Mohammed Bourhia. 2023. "Exploring the Antioxidant and Anti-Inflammatory Potential of *Wilckia maritima*: In Vitro and In Silico Investigations" *Processes* 11, no. 5: 1497. <https://doi.org/10.3390/pr11051497>.

24. Jananie, R.K.; Priya, V.; Vijayalakshmi, K. Determination of bioactive components of *Cynodon dactylon* by GC-MS analysis. *N. Y. Sci. J.* 2011, 4, 16–20.

25. Kumar, P.P.; Kumaravel, S.; Lalitha, C. Screening of antioxidant activity, total phenolics and GC-MS studies of *Vitex negundo*. *Afr. J. Biochem. Res.* 2010, 4, 191–195.

26. Ahmed Aj. Jabbar, Fuad O. Abdullah, Kamran K. Abdulrahman, Yaseen Galali, Abdullah Sh. Sardar, "GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of *Papaver decaisnei* and Determination of Its Antioxidants and Anticancer Activities», *Journal of Food Quality*, vol. 2022, Article ID 1405157, 12 pages, 2022. <https://doi.org/10.1155/2022/1405157>.

27. Olivia, N.U., Goodness, U.C. & Obinna, O.M. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of *Hibiscus asper* leaves. *Futur J Pharm Sci* 7, 59 (2021). <https://doi.org/10.1186/s43094-021-00208-4>.

28. Gopalakrishnan K, Udayakumar R (2014) GC-MS analysis of phytocompounds of leaf and stem of *marsilea quadrifolia* (L). *Int J Biochem Res Rev* 4(6):517–526.

29. Somashekhar G, Sudhakar U, Srividya S, Suresh S. Phytochemical Analysis and in vitro Cell Viability Effects of Ethanolic Extract of *Ormocarpum cochinchinense* on Mouse Embryonic Fibroblasts. *INDIAN JOURNAL OF PHARMACEUTICAL EDUCATION AND RESEARCH*. 2023 Jan 1;57(1):120-4.

30. GC-MS Analysis of BioactiveCompounds in Methanolic Extracts of *Papaver decaisnei* and Determination of Its Antioxidants and Anticancer Activities.

31. Jabbar AA, Abdullah FO, Abdulrahman KK, Galali Y, Sardar AS. *Papaver decaisnei*: GC-MS alkaloids profiling, in vitro antioxidant, and anticancer activity. *Research Square*. 2022:1-8.

32. Sivakamasundari R, Mariajancyrani C. GC-MS analysis of chloroform extract of *Solanum Nigrum* leaf. *Schol. Academic Journal of Pharmacy*. 2013;2(3):268-73.

33. J. Maria Jancy Rani . In Vitro Evaluation of Antioxidant and Antidiabetic Potential of Poly Herbal Formulation. *Adv. Biores.* Vol 13 (2) March 2022: 86-93

34. Onuoha OU, Osuocha KU, Chukwu EC (2018) Phytochemical Profiling, Hypolipidemic, Haematological and Body Weight Effects of *Acanthus Montanus* Leaf Extracts in Male and Female Albino Rats. *Eur Exp Biol* Vol. 8 No. 5:30. doi:10.21767/2248-9215.100071.

35. Tyagi T, Agarwal M. Phytochemical screening and GC-MS analysis of bioactive con-

stituents in the ethanolic extract of *Pistia stratiotes* L. and *Eichhornia crassipes* (Mart.) solms. *Journal of Pharmacognosy and phytochemistry*. 2017;6(1):195-206.

36. Ganesh M, Mohankumar M. Extraction and identification of bioactive components in *Sida cordata* (Burm. f.) using gas chromatography–mass spectrometry. *Journal of food science and technology*. 2017 Sep;54:3082-91.

37. Ait Si Said, C.; Riad, N.; Zahi, M.R.; Saibour, S.; Akkal, S.; Zam, W.; Touafek, O.; El Hattab, M. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oil and Volatile Fraction from Olive Mill Wastewater. *Chemosensors* 2022, 10, 491. <https://doi.org/10.3390/chemosensors10110491>

38. Sudha T, Chidambarampillai S, Mohan VR. GC-MS analysis of bioactive components of aerial parts of *Fluggea leucopyrus* Willd. (Euphorbiaceae). *Journal of applied pharmaceutical science*. 2013 May 30;3(5):126-30.

39. Tyagi T, Agarwal M. GC-MS analysis of invasive aquatic weed, *Pistia stratiotes* L. and *Eichhornia crassipes* (Mart.) Solms. *International Journal of Current Pharmaceutical Research*. 2017;9(3):111.

40. Rigoberto Villanueva Guerrero, Rodolfo Abarca-Vargas, Vera L Petricevich. Chemical compounds and biological activity of an extract from *bougainvillea x buttiana* (var. rose) holttum and standl. *Int J Pharm Pharm Sci* 2017;9(3):4246.

41. Adeoye-Isijola MO, Olajuyigbe OO, Jonathan SG, Coopooosamy RM. Bioactive compounds in ethanol extract of *Lentinus squarrosulus* Mont-a Nigerian medicinal macrofungus. *African Journal of Traditional, Complementary and alternative medicines*. 2018 May 9;15(2):42-50.

42. Casillas-Vargas G, Ocasio-Malave C, Medina S, Morales-Guzman C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. 2021. Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. *Progress in Lipid Research* 82(6):101093 DOI 10.1016/j.plipres.2021.101093.

43. Chirumamilla P, Dharavath SB, Taduri S. GC-MS profiling and antibacterial activity of *Solanum khasianum* leaf and root extracts. *Bulletin of the National Research Centre*. 2022 May 8;46(1):127.

44. Adebiyi AO, Oyeyemi SD, Tedela PO, Ojo VI. GC-MS analysis of bioactive compounds from n-hexane leaf extract of a tropical fern, *Nephrolepis cordifolia* (L) C. Presl. *East African Scholars Journal Biotechnology and Genetics*. 2019;1(5):118-23.

45. Reddy GJ, Reddy KB, Reddy GS. GC-MS analysis and in-vitro anti-diabetic activity of bioactive fractions of *Feronia elephantum* fruit. *Int J Pharm Sci and Res*. 2020;11(5):1000-.

46. Abirami D, Gomathi R. Target and candidate agents for diabetes treatment in the framework of the food nexus. *Energy Nexus*. 2022 Mar 16;5:100041.

47. Babar AG, Pande A, Kulkarni BG. Anti-fungal activity and investigation of bioactive compounds of marine intertidal bivalve *Gastrarium divaricatum* from West coast of India. *Int J Pure App Bio*. 2016;4(2):211-7.

48. Tanod WA, Yanuhar U, Wahyudi D, Risjani Y. DPPH scavenging property of bioactives from soft corals origin Palu Bay, Central Sulawesi, Indonesia. *InIOP Conference Series: Earth and Environmental Science* 2019 Feb 1 (Vol. 236, No. 1, p. 012121). IOP Publishing.

49. Godara P, Dulara BK, Barwer N, Chaudhary NS. Comparative GC-MS Analysis

of Bioactive Phytochemicals from Different Plant Parts and Callus of *Leptadenia reticulata* Wight and Arn. *Pharmacognosy Journal*. 2019;11(1).

50. Salvamani S, Gunasekaran B, Shukor MY, Bakar MZ, Ahmad SA. Phytochemical investigation, hypocholesterolemic and anti-atherosclerotic effects of *Amaranthus viridis* leaf extract in hypercholesterolemia-induced rabbits. *RSC advances*. 2016;6(39):32685-96.

51. GC-MS Analysis of Phytocomponents in the Methanolic Extract of *Shorea Robusta* Mathavi P 1 , Nethaji S 2 , Velavan3 1Research Scholar, Department of Biochemistry, Marudupandiyan College, Thanjavur, Tamil Nadu, S. India 2Department of Biochemistry, Marudupandiyan College, Thanjavur, Tamil Nadu, S. India.

52. Begum SF, Priya S, Sundararajan R, Hemalatha S. Novel anticancerous compounds from *Sargassum wightii*: In silico and in vitro approaches to test the anti-proliferative efficacy. *Journal of Advanced Pharmacy Education & Research* Jul-Sep. 2017;7(3).

53. Ramya B, Malarvili T, Velavan S. GC-MS analysis of bioactive compounds in *Bryonopsis laciniosa* fruit extract. *International Journal of Pharmaceutical Sciences and Research*. 2015 Aug 1;6(8):3375.

54. Ansarali S. Identification of biological components from potential bone healer medicinal plants. *Journal of drug delivery and therapeutics*. 2018 May 14;8(3):32-41.

55. Abhishek Biswal R, Luvincia Fernando, Vivek Pazhamalai, Brindha Devi P. Phytochemical screening and GC-MS analysis of Ethanolic extract of *Acacia planifrons* seeds. *Research J. Pharm. and Tech.* 2020; 13(10):4823-4825. doi: 10.5958/0974-360X.2020.00848.3

56. Arora S, Kumar G. Gas Chromatography-Mass Spectrometry (GC-MS) determination of bioactive constituents from the methanolic and ethyl acetate extract of *Cenchrus setigerus* Vahl (Poaceae). *Antiseptic*. 2017;2(0.31).

57. Zayed MZ, Ahmad FB, Ho WS, Pang SL. GC-MS analysis of phytochemical constituents in leaf extracts of *Neolamarckia cadamba* (Rubiaceae) from Malaysia. *Int. J. Pharm. Pharm. Sci.* 2014 Aug;6(9):123-7.

58. Keke CO, Nsofor WN, Kumabia FK, Ilobuchi GC, Ejiofor JC, Osuagwu OL. GCMS and FTIR analysis of ethanol and methanol leave extract of *Urena lobata* (Caesar weed) for bioactive phytochemical constituents. *Journal of Drug Delivery and Therapeutics*. 2023 Jan 15;13(1):99-115.

59. Zhao, L.; Chen, J.; Su, J.; Li, L.; Hu, S.; Li, B.; Zhang, X.; Xu, Z.; Chen, T. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. *J. Agric. Food Chem.* 2013, 61, 10604–10611

60. Ragunathan V, Pandurangan J, Ramakrishnan T. Gas chromatography-mass spectrometry analysis of methanol extracts from marine red seaweed *Gracilaria corticata*. *Pharmacognosy Journal*. 2019;11(3).

61. Sedaghat T, Ebrahimi Y, Carlucci L, Prosperio DM, Nobakht V, Motamedi H, et al. Diorganotin(IV) complexes with 2-furan-carboxylic acid hydrazone derivative of benzoylacetone: Synthesis, X-ray structure, antibacterial activity, DNA cleavage and molecular docking. *J Organomet Chem*. 2015 Oct 1;794:223–30.

62. Shapla UM, Solayman M, Alam N, Khalil MI and Gan SH, 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. *BMC Chemistry*. 12:1-18.

63. Sharma MD, Rautela I, Sharma N, Gahlot M, Koshy EP. GC-MS analysis of phy-

tocomponents in juice sample of Indian cane: *Saccharum Barberi*. International Journal of Pharmaceutical Sciences and Research. 2015 Dec 1;6(12):5147-53.

64. Fagbemi KO, Aina DA, Adeoye-Isijola MO, Naidoo KK, Coopooosamy RM, Olajuyigbe OO. Bioactive compounds, antibacterial and antioxidant activities of methanol extract of *Tamarindus indica* Linn. Scientific Reports. 2022 Jun 8;12(1):9432.

65. Rizvi SN, Afzal S, Khan KU, Aati HY, Rao H, Ghalloo BA, Shahzad MN, Khan DA, Esatbeyoglu T, Korma SA. Chemical Characterisation, Antidiabetic, Antibacterial, and In Silico Studies for Different Extracts of *Haloxylon stocksii* (Boiss.) Benth: A Promising Halophyte. Molecules. 2023 May 1;28(9):3847.

66. Hussein HM. Analysis of trace heavy metals and volatile chemical compounds of *Lepidium sativum* using atomic absorption spectroscopy, gas chromatography-mass spectrometric and fourier-transform infrared spectroscopy. Research Journal of Pharmaceutical Biological and Chemical Sciences. 2016 Jul 1;7(4):2529-55.

67. Sukiman M. PHYTOCHEMICAL SCREENING AND VOLATILE COMPOUND ANALYSIS USING GC-MS OF ISEM KEMBANG (*Mangifera lampungise*), INDIGENOUS FRUIT FROM LAMPUNG, INDONESIA.

68. Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety assessment of benzyl alcohol, benzoic acid and its salts, and benzyl benzoate. International journal of toxicology. 2017 Nov;36(3_suppl):5S-30S.

69. Goutam J, Kharwar RN, Tiwari VK, Mishra A, Singh S. Isolation and identification of antibacterial compounds isolated from endophytic Fungus *Emericella quadrilineata*. Nat Prod Chem Res. 2016;4(205):2.

70. Sharma M, Mallubhotla S. Diversity, antimicrobial activity, and antibiotic susceptibility pattern of endophytic bacteria sourced from *Cordia dichotoma* L. Frontiers in microbiology. 2022 May 13;13:879386.

71. FAIRUZ YS, Ismail SI, MAHMUD T, FARHANAH HF. Phytochemical composition in hexane and methanolic leaf extract of *Vernonia amygdalina*. Malaysian Applied Biology. 2019 Dec 31;48(5):11-7.

72. Bensaad MS, Dassamiour S, Hambaba L, Kahoul MA, Sami R, Al Masoudi LM, Al-Mushhin AA, Benajiba N. Chemical profile by gas chromatography/mass spectrometry of ethyl acetate and N-butanol extracts of *Centaurea tougourensis* Boiss. & Reut. Journal of Biobased Materials and Bioenergy. 2022 Feb 1;16(1):140-9.

73. Sri I, Muhammad Y, Riskayanti R, Nur A, Mahyati L, Rahmiah S, Nur Fitriani UA. GC-MS and Antioxidant Capacity Analysis in Propanol Extract of *Carthamus Tinctorious* L. INTEK: Jurnal Penelitian. 2021;8(1):67-73.

74. Sanjaya P, Lekha K. Preliminary phytochemical analysis, GC-MS studies and antioxidant activity of *Majidea zangueberica* J. Kirk leaf extracts. J Med Plants Stud. 2019;7(2):186-95.

75. Yakubu OE, Isaac UJ, Emochone YR, Ehi OT. Research Article Purification and GC-MS Spectroscopic Identification of Active Antioxidant Principles in Ethanol Extract of *Phyllanthus amarus* Leaves.

76. Kawuri R, Darmayasa IB. Bioactive compound of *Streptomyces capoamus* as biocontrol of Bacterial Wilt Disease on Banana Plant. In IOP Conference Series: Earth and Environmental Science 2019 Nov 1 (Vol. 347, No. 1, p. 012054). IOP Publishing.

77. Soosairaj S, Dons T. Bio-active compounds analysis and characterization in

ethanolic plant extracts of *Justicia tranque bariensis* L.(Acanthaceae)-using GC-MS. *Int. J. Chemtech Res.* 2016;9:260-5.

78. El-Fayoumy EA, Shanab SM, Gaballa HS, Tantawy MA, Shalaby EA. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of *Chlorella vulgaris* axenic culture grown under various concentrations of copper ions. *BMC Complementary Medicine and Therapies.* 2021 Dec;21(1):1-6.

79. Addai ZR, Abood MS, Hlail SH. GC-MS profiling, antioxidants and antimicrobial activity of prickly pear (*Opuntia ficus-indica*) pulp extract. *Pharmacognosy Journal.* 2022;14(2).

80. Qanash H, Yahya R, Bakri MM, Bazaid AS, Qanash S, Shater AF, TM A. Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (*Dovyalis caffra*) fruit. *Scientific Reports.* 2022 Apr 8;12(1):5914.

81. Kilonzo M, Rubanza C, Richard U, Sangiwa G. Antimicrobial activities and phytochemical analysis of extracts from *Ormosia trichocarpum* (Taub.) and *Euclea divinorum* (Hiern) used as traditional medicine in Tanzania. *Tanzania Journal of Health Research.* 2019;21(2):1-2.

82. Arora S, Meena S. GC-MS Profiling of *Ceropegia bulbosa* Roxb. var. *bulbosa*, an endangered plant from Thar Desert, Rajasthan. *The Pharma Innovation Journal.* 2017;6(11):568-73.

83. Arora S, Kumar G, Meena S. Gas chromatography-mass spectroscopy analysis of root of an economically important plant, *Cenchrus ciliaris* L. from Thar desert, Rajasthan (India). *Asian J. Pharm. Clin. Res.* 2017;10:64-9.

84. Wulandari AP, Rossiana N, Wandira A. Analysis of the Bioactive Compounds and Antibacterial Test on N-Hexane Extract of Ramie (*Boehmeria nivea*). *Biosaintifika:* *Journal of Biology & Biology Education.* 2022 Dec 1;14(3).

85. Yusuf M, Indriati S, Attahmid NF, Saleh R, Rifai A. Effect of Extraction Time on the Bioactive Compounds of Bottle Gourd (*Lagenaria siceraria*) using Gas Chromatography-Mass Spectrometry. *Bulletin of Pharmaceutical Sciences.* Assiut. 2022 Jun 1;45(1):139-51.

86. Rajalakshmi S, Mahesh N. Production and characterization of bioactive metabolites isolated from *Aspergillus terreus* in rhizosphere soil of medicinal plants. *International Journal of Current Microbiology and Applied Sciences.* 2014;3(6):784-98.

87. Esmat AU, Mittapally S, Begum S. GC-MS analysis of bioactive compounds and phytochemical evaluation of the ethanolic extract of *Gomphrena globosa* L. flowers. *Journal of Drug Delivery and Therapeutics.* 2020 Mar 15;10(2):53-8.

88. Kannan V, Anandan R, Sudalaimani DK, Srinivasan S, Athiappan M. Antibacterial and antioxidant activity of Metabolites from bioconverted docosahexaenoic acid using gut bacteria.

89. Nayak BU, Roy S, Roy M, Mitra A, Karak K. Phytochemical, antioxidant and antimicrobial screening of *Suaeda maritima* L (Dumort) against human pathogens and multiple drug resistant bacteria. *Indian J Pharm Sci.* 2018 Jan 1;80(1):26-35.

90. Identification of antioxidant compound and antifungal activity in *fagonia bruguieri* DC Krishan Kumar Sharm, Piyush Panwar.

91. Nitbani FO, Tjitda PJ, Nurohmah BA, Wogo HE. Preparation of fatty acid and monoglyceride from vegetable oil. *Journal of Oleo Science.* 2020;69(4):277-95.

92. Torregrosa R, Balcells M, Torres M, Canela-Garayoa R. Chemoenzymatic solvent-free synthesis of 1-monopal-

mitin using a microwave reactor. *Natural Product Communications.* 2014 Aug;9(8):1934578X1400900809.

93. Adnan M, Nazim Uddin Chy M, Mostafa Kamal AT, Azad MO, Paul A, Uddin SB, Barlow JW, Faruque MO, Park CH, Cho DH. Investigation of the biological activities and characterization of bioactive constituents of *Ophiorrhiza rugosa* var. *prostrata* (D. Don) & Mondal leaves through *in vivo*, *in vitro*, and *in silico* approaches. *Molecules.* 2019 Apr 8;24(7):1367.

94. Jawale PV, Bhanage BM. Kinetic and docking study of synthesis of glycerol monostearate by immobilized lipase in non-aqueous media. *Biocatalysis and Biotransformation.* 2023 Mar 4;41(2):123-32.

95. Lund R, Ibrahim R, Johansson E. Identification of antistatic/antifogging agents in polymers, including used plastic packaging.

96. Kang JH, Yoo KH, Park HY, Hyun SM, Han SD, Kim DW, Park CW. Preparation and *in vivo* evaluation of a lidocaine self-nanoemulsifying ointment with glycerol monostearate for local delivery. *Pharmaceutics.* 2021 Sep 14;13(9):1468.

97. Nazir N, Zahoor M, Uddin F, Nisar M. Chemical composition, *in vitro* antioxidant, anticholinesterase, and antidiabetic potential of essential oil of *Elaeagnus umbellata* Thunb. *BMC Complementary medicine and therapies.* 2021 Dec;21(1):1-3.

98. Pal V, Gour VS, Sharma P, Choudhary A, Rekadwad BN, Singh J, Rani K. Evaluation of chemical composition of seed oil and oil cake of *Ailanthus excelsa* (Roxb.) and its application. *OCL.* 2023;30:14.

99. Reza AA, Haque MA, Sarker J, Nasrin MS, Rahman MM, Tareq AM, Khan Z, Rashid M, Sadik MG, Tsukahara T, Alam AK. Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of *Achyranthes ferruginea* Roxb. in cancer cell line. *Food Science & Nutrition.* 2021 Jul;9(7):3777-805.

100. Reddy GJ, Reddy KB, Reddy GS. GC-MS analysis and *in-vitro* anti-diabetic activity of bioactive fractions of *Feronia elaephantum* fruit. *Int J Pharm Sci and Res.* 2020;11(5):1000-.

101. Arora S, Kumar G. Phytochemical screening of root, stem and leaves of *Cenchrus biflorus* Roxb. *Journal of Pharmacognosy and Phytochemistry.* 2018;7(1):1445-50.

102. Velankanni SV, Mary TN, Arun M, Radhakrishnan R, Gurusaravanan P. Extraction Of Bioactive Compounds From Seaweed *Dictyota Dichotoma* (Hudson) JV Lamouroux And Assessment Of Its Antioxidant Activity. *Journal of Pharmaceutical Negative Results.* 2022 Dec 31:3528-39

103. Kumari N, Menghani E, Mithal R. GCMS analysis & assessment of antimicrobial potential of rhizospheric Actinomycetes of AIA3 isolate. *Indian Journal of Traditional Knowledge (IJTK).* 2019 Dec 27;19(1):111-9.

104. Khan IH, Javaid A. Hexane soluble bioactive components of leaf extract of quinoa. *Journal of Animal and Plant Sciences.* 2022 Apr 1;32(2):309-14.

105. Anoor PK, Yadav AN, Rajkumar K, Kande R, Tripura C, Naik KS, Burgula S. Methanol extraction revealed anticancer compounds Quinic Acid, 2 (5H)Furanone and Phytol in *Andrographis paniculata*. *Molecular and Clinical Oncology.* 2022 Nov 1;17(5):1-3.

106. Al Abboud MA, Ismail KS, Mashraqi A, Alibishi S, Al-Namazi AA, Masrahi YS. GC-MS analysis and antibacterial activities of some plants belonging to the genus *Euphorbia* on selected bacterial isolates. *Open Chemistry.* 2023 Apr 19;21(1):20220325.

107. Suhartono E, Biworo A, Santosa PB, Si-ahaan SC, Marisa D, Muthmainah N, Komari N. Molecular docking studies of 4-ethyl-2-methoxyphenol and 1, 3-cyclopentanedione compounds from gemor (Nothaphoebe coriacea) with glucagon like-peptide-1 (GLP-1) receptor. In IOP Conference Series: Earth and Environmental Science 2022 Feb 1 (Vol. 976, No. 1, p. 012050). IOP Publishing.
108. Ahmad I, Ahmad S, Rao H, Shaukat U, Shahzad MN, Sajid-ur-Rehman M, Basit A, Arshad MA, Ahmad B. Multi-method determination of Antioxidant Capacity, phytochemical and biological investigation of four different solvent extractives of *Leucophyllum frutescens* (cenizo).
109. Tripathi N, Kumar S, Singh R, Singh CJ, Singh P, Varshney VK. Isolation and Identification of γ -Sitosterol by GC-MS from the Leaves of (Decne). The Open Bioactive Compounds Journal. 2013 Dec 13;4(1).
110. Tripathi NI, Kumar S, Singh RA, Singh CJ, Singh PR, Varshney VK. Isolation and Identification of γ -sitosterol by GC-MS from Roots of *Girardinia heterophylla*. Oriental Journal of Chemistry. 2013;29(2):705-7.
111. Sivakrishnan S, Pradeepraj D. Gas Chromatography-Mass Spectroscopy Analysis of Ethanolic Extract of Leaves of *Cordia obliqua*. Asian J Pharm Clin Res. 2019;12(6):110-2.
112. Sofi MS. Evaluation of pro-apoptotic effects of β -monolinolein on metastatic breast cancer cell line MDA-MB-231. Asian J. Pharm. Clin. Res. 2019;12:235-40.
113. Adeoye-Isijola MO, Olajuyigbe OO, Jonathan SG, Coopooosamy RM. Bioactive compounds in ethanol extract of *Lentinus squarrosulus* Mont-a Nigerian medicinal macrofungus. African Journal of Traditional, Complementary and alternative medicines. 2018 May 9;15(2):42-50.
114. Teoh YP, Don MM. Effect of Temperature on *Schizophyllum commune* Growth and 4H-pyran-4-one, 2, 3-dihydro-3, 5-dihydroxy-6-methyl-Production using a Bubble Column Bioreactor. Chiang Mai J. Sci. 2015 Jul 1;42:539-48.
115. Van Chen T, Cuong TD, Quy PT, Bui TQ, Van Tuan L, Van Hue N, Triet NT, Ho DV, Bao NC, Nhung NT. Antioxidant activity and α -glucosidase inhibitory of *Distichochlamys citrea* MF Newman rhizome fractionated extracts: in vitro and in silico screenings. Chemical Papers. 2022 Sep;76(9):5655-75.
116. Antioxidant, Anti-Cancer Activity and Phytochemicals Profiling of *Kigelia pinnata* Fruits Khaled M. A. Ramadan
117. Banakar P, Jayaraj M. GC-MS analysis of bioactive compounds from ethanolic leaf extract of *Waltheria indica* Linn. and their pharmacological activities. Int. J. Pharm. Sci. Res. 2018 May 1;9(5):2005-10.
118. Vandayar AV, Pushpam MS. Phytochemicals analysis and GC-MS analysis of identification and characterization of bioactive compounds present in methanolic leaf extract *Azadirachta indica*.
119. Rajendran P, Bharathidasan R, Suresh Kumar K. GC-MS analysis of phyto-components in raw and treated sugarcane juice. Int J Curr Microbiol App Sci. 2017;6(7):51-61.
120. Bertuzzi AS, McSweeney PL, Rea MC, Kilcawley KN. Detection of volatile compounds of cheese and their contribution to the flavor profile of surface-ripened cheese. Comprehensive Reviews in Food Science and Food Safety. 2018 Mar;17(2):371-90.
121. Elshaarawy R, Aboali E, Alian A, Ibrahim H, El-Nabi SH, Mohammed-Geba K, Galal-Khallaf A. Preliminary assessment of bioactive ingredients and antioxidant ac-

tivity of some Red Sea invertebrates' extracts. Egyptian Journal of Aquatic Biology & Fisheries. 2023 Jul 1;27(4).

122. Sahu MK, Singh G. Structural identification through GC mass spectrophotometer and determine anti lithiotic activity of *Hibiscus rosa sinensis* by using ethylene glycol induced method. Journal of Medicinal Pharmaceutical and Allied Sciences. 2022;11(1):4244-9.

123. Murniasih TM. Antibacterial activity and GC-MS based metabolite profiles of Indonesian marine *Bacillus*. Indonesian Journal of Pharmacy. 2022 Jul 1.

124. H Elwakil B, Shaaban MM, Bekhit AA, El-Naggar MY, Olama ZA. Potential anti-COVID-19 activity of Egyptian propolis using computational modeling. Future Virology. 2021 Feb;16(2):107-16.

125. Kaur R, Taheam N, Sharma AK, Kharb R. Research Journal of Pharmaceutical, Biological and Chemical Sciences.

126. Sundur S, Shrivastava B, Sharma P, Raj SS, Jayasekhar VL. A review article of pharmacological activities and biological importance of *Calophyllum inophyllum*. Int J Adv Res. 2014;2(12):599-603.

127. Azizah RN, Husni A, Budhiyanti SA. Inhibitory activity of *Sargassum hystrix* extract and its chloroform fractions on inhibiting the α -glucosidase activity. InIOP Conference Series: Earth and Environmental Science 2019 Nov 1 (Vol. 370, No. 1, p. 012061). IOP Publishing.

128. Youssef AM, Maaty DA, Al-Saraireh YM. Phytochemical Analysis and Profiling of Antioxidants and Anticancer Compounds from *Tephrosia purpurea* (L.) subsp. *apollinea* Family Fabaceae. Molecules. 2023 May 7;28(9):3939.

129. Vandana CD, Shanti KN, Shantha SL. Gc-Ms Analysis of Callus and Leaf Extracts of in Vitro Propagated Plants of *Justicia Wynaadensis* (Nees) T. Anderson. International Journal of Pharmaceutical Sciences and Research. 2018 Feb 1;9(2):535-43.

130. Meinita MD, Harwanto D, Tirtawijaya G, Negara BF, Sohn JH, Kim JS, Choi JS. Fucosterol of marine macroalgae: Bioactivity, safety and toxicity on organism. Marine Drugs. 2021 Sep 27;19(10):545.

131. Aziz M, Ahmad S, Khurshid U, Pervaiz I, Lodhi AH, Jan N, Khurshid S, Arshad MA, Ibrahim MM, Mersal GA, Alenazi FS. Comprehensive biological potential, phytochemical profiling using GC-MS and LC-ESI-MS, and in-silico assessment of *Strobilanthes glutinosus* Nees: An Important Medicinal Plant. Molecules. 2022 Oct 14;27(20):6885.

132. Chouni A, Pal A, Gopal PK, Paul S. GC-MS analysis and screening of anti-proliferative potential of methanolic extract of *Garcinia cowa* on different cancer cell lines. Pharmacognosy Journal. 2021;13(2).

133. Farhan M. Metabolites Profiling and Biological Activities of Volatile Compounds of *Ruellia tuberosa* L. Leaves by GC-MS. Journal of Population Therapeutics and Clinical Pharmacology. 2023 Mar 25;30(3):690-8.

134. Mohan D. GC-MS Analysis of leaf and stem bark of *Cleidion Nitidum* (Muell.-Arg.) Thw. Ex Kurz.(Euphorbiaceae) Asian J. Pharm. Clin. Res. 2014;7(2):41-7.

135. Abd El-Ghffar EA, El-Nashar HA, El-dahshan OA, Singab AN. GC-MS analysis and hepatoprotective activity of the n-hexane extract of *Acrocarpus fraxinifolius* leaves against paracetamol-induced hepatotoxicity in male albino rats. Pharmaceutical biology. 2017 Jan 1;55(1):441-9.

136. Taha h, awang-jamil zu, aminuddin mf, basri am, zaidi bq, ahmad n. Phytochemicals and antimicrobial analysis of selected medicinal plants from Brunei Darussalam.

Biodiversitas Journal of Biological Diversity. 2021 Jan 13;22(2). CID: PMC9861494.

137. Manjunath KM, Krishnamurthy YL. In-vitro Assessment of Antibacterial and Electrochemical Properties of Methanolic Leaf Extracts of *Holigarna ferruginea* March. The Poisonous Plant Species in the Western Ghats. Asian Journal of Biological and Life Sciences. 2022 Sep;11(3):685.

138. Nandhini RS, Nithya RN, Vidhya K. GC-MS analysis of Phytochemical compounds in different extracts of *Curculigo orchiodes*. Research Journal of Pharmacy and Technology. 2021;14(8):4355-60.

139. Shalini K, Ilango KJ. Preliminary phytochemical studies, GC-MS analysis and in vitro antioxidant activity of selected medicinal plants and its polyherbal formulation. Pharmacognosy Journal. 2021;13(3).

140. Padmashree M, Ashwathanarayana R, Raja Naika RB. Antioxidant, cytotoxic and nutritive properties of Roem & Schult. *Ipomoea staphylina* plant extracts with preliminary phytochemical and GCMS analysis. Asian Journal of Pharmacy and Pharmacology. 2018;4(4):473-92.

141. Bhandari D, McCarthy D, Biren C, Movassighi C, Blount BC, De Jesús VR. Development of a UPLC-ESI-MS/MS method to measure urinary metabolites of selected VOCs: Benzene, cyanide, furfural, furfuryl alcohol, 5-hydroxymethylfurfural, and N-methyl-2-pyrrolidone. Journal of Chromatography B. 2019 Sep 15;1126:121746.

142. Petrova NV, Chernonosov AA, Koval VV, Andreeva VY, Erst AS, Kuznetsov AA, Kulikovskiy MS, Wang W, Yu SX, Kostikova VA. LC-HRMS for the Identification of Quercetin and Its Derivatives in *Spiraea hypericifolia* (Rosaceae) and Anatomical Features of Its Leaves. Plants (Basel). 2023 Jan 13;12(2):381. doi: 10.3390/plants12020381. PMID: 36679093; PMCID: PMC9861494.

143. Zhang, D., et al. "Natural Xanthine Oxidase Inhibitor 5-O-Caffeoylshikimic Acid", *Molecules* 2021, 26, 7307. Summary: Reports 5-O-caffeoyleshikimic acid as a xanthine-oxidase inhibitor (potential anti-hyperuricemia/gout activity) and discusses biological activity. Technique: biochemical/enzyme assays (compound identification supported by MS data in the study).

144. Lu CL, Zhu W, Wang M, Xu XJ, Lu CJ. Antioxidant and Anti-Inflammatory Activities of Phenolic-Enriched Extracts of *Smilax glabra*. Evid Based Complement Alternat Med. 2014;2014:910438. doi: 10.1155/2014/910438. Epub 2014 Nov 11. PMID: 25477999; PMCID: PMC4244943.

145. Xu WA, Yin L, Pan HY, Shi L, Xu L, Zhang X, Duan JA. Study on the correlation between constituents detected in serum from *Rhizoma Smilacis Glabrae* and the reduction of uric acid levels in hyperuricemia. J Ethnopharmacol. 2013 Nov 25;150(2):747-54. doi: 10.1016/j.jep.2013.09.024. Epub 2013 Oct 17. PMID: 24140588.

146. Li, J., Meng, Y., Wu, X. and Sun, Y., 2020. Polyamines and related signaling pathways in cancer. *Cancer cell international*, 20(1), p.539.

147. Sivashanmugam M, J J, V U, K N S. Ornithine and its role in metabolic diseases: An appraisal. Biomed Pharmacother. 2017 Feb;86:185-194. doi: 10.1016/j.biopha.2016.12.024. Epub 2016 Dec 12. PMID: 27978498.

148. Sivashanmugam M, J J, V U, K N S. Ornithine and its role in metabolic diseases: An appraisal. Biomed Pharmacother. 2017 Feb;86:185-194. doi: 10.1016/j.biopha.2016.12.024. Epub 2016 Dec 12. PMID: 27978498.

149. Kimura Y, Baba K. Antitumor and antimet-

astatic activities of Angelica keiskei roots, part 1: Isolation of an active substance, xanthoangelol. *Int J Cancer.* 2003 Sep 1;106(3):429-37. doi: 10.1002/ijc.11256. PMID: 12845685.

150. Trinh NT, Nguyen TMN, Yook JI, Ahn SG, Kim SA. Quercetin and Quercitrin from *Agrimonia pilosa* Ledeb Inhibit the Migration and Invasion of Colon Cancer Cells through the JNK Signaling Pathway. *Pharmaceuticals (Basel).* 2022 Mar 17;15(3):364. doi: 10.3390/ph15030364. PMID: 35337161; PMCID: PMC8951172.