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Abstract: 

	 Uterine fibroids (UFs) are extremely 
common neoplasm affecting up to 8 out of 
10 women during middle or late reproductive 
years leading to significant morbidity. Some of 
the serious complications associated with UFs 
include abortion, abnormal foetal formation, 
obstructed labour, postpartum haemorrhage 
in pregnancy and premature deliveries in 
pregnant women whereas heavy and prolonged 
menstrual bleeding, pelvic pressure, anaemia, 
urinary incontinence, constipation and infertility 
were discovered in non-pregnant women. 
Hormonal irregulation particularly estrogen 
hormone followed by genetics, epigenetics, 
environmental factors, and lately gut microbiota 
have been associated in the pathogenesis of 
UFs. The most common indication for UFs is 
hysterectomy, whereas medications available 
were less effective in most of the cases. 
There are various review articles that have 
been published on UFs in the past decade. 
However, up to date review that comprehends 
epidemiology, pathogenesis, physiopathology 
and classifications of UFs is not available   
Thus, our goal is to explore and scrutinize every 
aspects within the topic to help provide absolute 
understanding on UFs.
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1.0 Introduction:

	 Uterine fibroids (UFs), otherwise 
known as leiomyomas or myomas are a 
common pelvic neoplasm occurring in women 
of a reproductive age. These fibroids are 
benign tumours originating from the myometrial 
smooth muscle cells.  Besides smooth muscle, 
UFs also comprised of extracellular matrix, 
for instance, collagen, proteoglycan and 
fibronectin. Depending on the study population 
and diagnostic method, the prevalence of UFs 
were reported to be around 4.5% to 68.6%, with 
black women having two to threefold increased 
risk as compared to white women(1). However, 
the prevalence tends to be underestimated 
as only approximately 25 to 50% of women 
becomes symptomatic, experiencing symptoms 
such as heavy bleeding, bleeding between 
periods, pressure on the bladder and painful 
sexual intercourse which greatly influenced 
their quality of life(2). In this context, a cross-
sectional study revealed that UFs had a 
moderate to significant impact in the quality of 
life among 64% of women with UFs(3).Among 
the treatment options available, hysterectomy is 
the only definitive treatment which involves the 
surgical removal of the entire uterus.UFs have 
also been the main indication for hysterectomy 
in the United States, which comprised about 
50% of all hysterectomy cases(4,5). In addition, 
UFs significantly burdened the   health care 
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system, with a total direct cost of 2 billion 
per year attributed to UFs alone. Among this, 
majority of the cost are due to inpatient care, 
particularly hysterectomy (6). The cause of UFs 
is multifactorial, with multiple pathway being 
identified to contribute to the formation of UFs. 
Among this, hormones such as oestrogens 
and progesterone, excessive extracellular 
matrix and epigenetics have been linked to 
the aetiology of UFs(7–9). Thus, this review 
aims to discuss and present comprehensive 
knowledge on the prevalence, physiopathology 
and pathogenesis, of uterine fibroids. 

2.0 Prevalence of Uterine Fibroids

	 Generally, UFsoccurs in 50-60% of 
women rising to 70-80% by the age of 50(10). As 
UFs is an asymptomatic condition, the prevalence 
tends to be underestimated as most of the 
epidemiologic studies focused on symptomatic 
womenrather than the asymptomatic women and 
those who attended to gynaecological clinics. 
However, study conducted in US on randomly 
selected women of age between 35- 49 years 
showed that the incidence of UFs at the age 
35 was 60%, increasing to more than 80% by 
age of 50 inAfrican American women. The exact 
prevalence of UFs isbelievedto beremained 

 
 

Table 1: The Prevalence of Uterine Fibroids at different country 

Country Year conducted Diagnostic test Prevalence Reference 

United Kingdom 
France 
Canada 
USA 
Brazil 
Germany 
Korea  
Italy 

2009 Self-report 4.5% (n=1,503) 
4.6% (n=1,465) 
5.5% (n=851) 
6.9% (n=7,685) 
7.0% (n=5,543) 
8.0% (n=1,951) 
9.0% (n=1,353) 
9.8% (n=1,396) 

Zimmermann 
et al(2) 

France 
Germany 
Italy 
Spain 
United Kingdom 

2010 Self-report 26.4% (n=358) 
34.3% (n=345) 
42.4% (n=351) 
37.9% (n=352) 
36.8% (n=350) 

Downes et 
al(11) 

Korea 2013 Data obtained from 
Korean National 
Health Insurance 
Service (NHIS) 
cohort data 

2.43% (n=302,760) Lee et al(12) 

Nigeria 2014 Sonography 6.83% (n=176) Ukwenya et 
al(13) 

South India 2014-2016 Sonography, 
Histology 

37.65% (n=136) Munusamy et 
al(14) 

India 2015-2017 Ultrasound 11.6% (n=522) Srilatha et 
al(15) 

US 2016 Self-report 9%  Marsh et 
al(16) 

China 2016 Data extracted from 
Global Burden of 
Disease Study 2016 

4.10% 
(n=27, 169,312) 

Ji et al(17) 

 

 

3.0 Physiopathology of Uterine Fibroids 

Uterine Fibroids occurs from the excessive growth of smooth muscles and connective tissuesof the endometrium. According to 
WHO, UFs is defined as “a benign, smooth-muscle tumour that has several variant morphological features”(18). Two stages 
have been identified in the development of UFs, which is the conversion of normal myocytes to abnormal myocytes with a 
decreased contractile organelles and a higher rate of cell division and the subsequent development into fibroid(19). The 
development of fibroids is classified into 4 phases according to the collagen content and the rate of proliferation of the myocytes. 
Going across the different phases, the collagen content seemed to increase with a decrease in proliferation and a decrease in 
density of micro-vessel. Most of the fibroids identified in phase 3contains an estimation of 10-50% collagen with early 
senescence at the end of phase 3(20). The arrangement of myocytes of UFswas observed to be disorganized as compared to 
the normal myometrium. As the extracellular matrix accumulates across the phases, this causes the distance between 
myocytes and the distance of myocytes to the capillaries to increase that leads to ischemia. Eventually, ischemia will lead to 
atrophy of the myocytes(20). 

The size of fibroids depends on various factors, mainly with elevated oestrogen hormones, which relatively leads to an increase 
in the size of UFs. Based on findings, the size of an UFs can be as small as apple seed to as big as honey dew, with diameter 
of more than 10cm. Figure 1 shows the different sizes of fibroids removed from a women.  
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in the shadow. However, studies reported on 
the prevalence of UFs by various regions and 
countries were summarized in Table 1.

3.0 Physiopathology of Uterine Fibroids

	 Uterine Fibroids occurs from the 
excessive growth of smooth muscles and 
connective tissuesof the endometrium. 
According to WHO, UFs is defined as “a benign, 
smooth-muscle tumour that has several variant 
morphological features”(18). Two stages have 
been identified in the development of UFs, 
which is the conversion of normal myocytes to 
abnormal myocytes with a decreased contractile 
organelles and a higher rate of cell division and 
the subsequent development into fibroid(19). 
The development of fibroids is classified into 
4 phases according to the collagen content 
and the rate of proliferation of the myocytes. 
Going across the different phases, the collagen 
content seemed to increase with a decrease in 
proliferation and a decrease in density of micro-
vessel. Most of the fibroids identified in phase 
3contains an estimation of 10-50% collagen 
with early senescence at the end of phase 
3(20). The arrangement of myocytes of UFswas 
observed to be disorganized as compared to the 
normal myometrium. As the extracellular matrix 
accumulates across the phases, this causes the 
distance between myocytes and the distance 
of myocytes to the capillaries to increase that 
leads to ischemia. Eventually, ischemia will lead 
to atrophy of the myocytes(20).

	 The size of fibroids depends on 
various factors, mainly with elevated oestrogen 
hormones, which relatively leads to an increase 
in the size of UFs. Based on findings, the size 
of an UFs can be as small as apple seed to as 
big as honey dew, with diameter of more than 
10cm. Figure 1 shows the different sizes of 
fibroids removed from a women. 

Classifications of Uterine Fibroids

	 Different classifications for UFs have 
been addressed in studies, however UFs 
are commonly classified according to their 
anatomical location into subserosal, intramural 
and submucosal fibroids(18,21). The most 
common UFs is the subserosalfibroid which 
is asymptomatic unless the size is very big. It 
arises from the myometrium and grows out 
towards the serosal surface. It may be sessile 
or pedunculated.  The intramural UFs are 
present within the uterine wall myometrium and 
may affect the shape of the uterine cavity. They 
may appear with symptoms such as infertility 
or menorrhagia while submucosal UFs are 
symptomatic at large. Same as all types of UFs, 
submucosal UF sarises from the myometrium 
and it grows towards the endometrial cavity, 
protruding it.Submucous UFs can be further 
classified into type 0 (fibroid polyp), type I ( less 
than 50% is contained within the myometrium) 
and type II (more than 50% intramural extension)
(22). According to Nguefack et al., 89.4% of the 
UFs is classified as submucous, 74.5% were 
intramural UFs while 10.6% were subserous(23). 
The fibroid with the most significant effect 
towards pregnancy and implantation rate 
issubserosal fibroid followed by intramural and 
submucosal. Studies have also reported the 
detrimental effect of submucosal and intramural 
UFs towards pregnancy rate, with fertility being 
improved following myomectomy(24–26). A 
consistent report on subserosal fibroids showed 
no negative impact towards pregnancy rate 
and there was also no improvement observed 
following myomectomy(26,27).

	 The International Federation of 
Gynecology and Obstetrics (FIGO) classifications 
for Uterine fibroids are summarized Table 2(28).

Figure 1.Different sizes of uterine fibroids
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Table 2. FIGO classification of Uterine Fibroids

Stages Description
0 Pedunculated intracavitary submucosal 
1 <50% intramural submucosal 
2 ≥50% intramural submucosal 
3 Intramural fibroid in contact with endometrium or 100% intramural 
4 Completely located intramurally
5 Subserosal  that is ≥50% located intra-murally
6 Subserosal  that is <50% located intra-murally
7 Subserosal pedunculated 
8 Others (such as cervical, parasitic)

Hormones role in  Uterine Fibroids	
	 Uterine fibroids have been linked to 
various pathogenesis as shown in figure 2, 
with hormonal role being one of the major 
contributors to UFs. UFs are commonly 
observed during the reproductive years of 
woman with a peak incidence at around 40 
years old, with no cases being reported before 
puberty. In addition to that, association between 
the use of oral contraceptives with UFs has also 
been found with a higher risk of UFs occurring 
in women who used oral contraceptive at a 
young age, suggesting the role of estrogen in 

Figure 2. Pathogenesis of uterine fibroids summarized

the pathogenesis of UFs(29). Following that, 
studies have identified the role of progesterone 
in the development of UFs by involving in the 
regulation of genes involved in proliferation 
and apoptosis. (30)Knowing the fact thatUFsis 
hormone dependent, the role of each hormone 
specifically estrogen, progesterone and 
androgen on UFs are illustrated in detail as 
below. 
Estrogenin UFs
High level of estradiolwas shown to increase 
the risk of UFs in midlife women without any 
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fibroids previously(31).There were studies 
reported on increase in estrogen receptor 
mRNA andtranscription factor in patients with 
UFs as compared to individual without UFs (32–
34). Supportingthis, another study mentioned 
that UFshas about 40% higher concentration 
of estrogen receptor as compared to normal 
myometrium(35). The greater the prevalence of 
UFsduring the first few years before reaching 
menopause, and when missed ovulation 
occurs more frequently with a decrease in 
progesterone level suggest that estrogen have 
a more significant role in UFs as compared to 
progesterone(36).
	 Furthermore, studies have also 
reported an increased aromatase expression 
in women with UFs as compared to normal 
myometrium(34,37–39). The ability of aromatase 
to convert androstenedione to estrogen, thereby 
allowing the leiomyoma cells to synthesize 
sufficient estrogen resulting in cell proliferation 
and hence, fibrosis(39). These results are in 
line with the findings that the use of aromatase 
inhibitor is able to reduce leiomyoma cell growth 
and may also shrink the tumour(40–42).
	 Estrogen has been found to promote 
leiomyoma via various mechanisms. Among 
them, it has been hypothesised that estrogen 
stimulates leiomyoma via cytokines, growth 
factors or apoptosis-inducing factors. (43) The 
ability of 17-beta estradiol in down-regulating 
p53, a tumor suppressor protein, is also 
proposed as a possible mechanism as to how 
estrogen contributes to UFs(44). Protein p53 
is involved in the regulation of cell cycle by 
affecting the expression of other factors involved 
in cell proliferation and cell death, such as p21 
or Bax(45–47). It arrests cell cycle particularly 
at the G1 phase, and permits damaged DNA 
to be repaired(45). The reduction in the level of 
p53 by estrogen thereby reduces apoptosis and 
allows the tumour to proliferate.
	 The other important functions of 
estrogen in the development of UF sis the 
increase of progesterone receptor, causing 
the tissues to be more sensitive towards 

progesterone(48).
Androgen in UFs
	 In previous studies, androgen was not 
identified as a factor for UFs development. 
However, one study by Women’s Health 
Across the Nation (SWAN) has changed the 
perspective on androgen when they identified 
the role of androgen in UFs which increases 
the odd of women by 1.33 times in developing 
UFs. The mechanism proposed is due to the 
ability of androgen, in particular testosterone to 
be converted by aromatase to estradiol. Prior to 
this, another study have also demonstrated an 
increased level of androgen receptor protein by 
100% in leiomyoma tissue, which highlighted  
androgen receptor involvement in the cell 
division of leiomyoma cells(49). This study 
also suggest ,  androgen receptor promotes 
the cell growth in leiomyoma via the insulin-like 
growth factor-1 (IGF-1)-mediated myometrial 
cell proliferation and the myeloid cell leukemia 
1 (MCL1)-mediated regulation of myometrial 
cell apoptosis(49). This is attributed to the 
need of androgen receptor for IGF-1 receptor 
protein stability and myometrial cell proliferation 
via ligand-independent mechanisms(50) while 
MCL1 (an anti-apoptotic protein)(51) is involved 
in the androgen receptor-activated pathway 
that mediates the anti-apoptotic function in 
myometrial cell(49).
Progesterone in UFs
	 Studies have proved, the level of 
progesterone receptor is significantly higher 
in patient with UFs, suggesting that activation 
of progesterone receptor may be favourable 
for leiomyoma growth(52,53). Progesterone 
produces its action by acting on progesterone 
receptor which consists of two types, PR-A and 
PR-B.
	 One of the mechanisms proposed is the 
ability of progesterone to increase the expression 
of Bcl-2 protein. Bcl-2 is a proto-oncogene which 
have the ability to block apoptosis and lead to 
reduced cell death and increase the proliferation 
when there is an increased expression of Bcl-
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2, resulting in tumor(52). Retinoid acid (RA), a 
natural metabolite of vitamin A, is also involved 
in signalling, which plays an important role 
in specifying cell identities and control gene 
expression via the interaction with specific 
nuclear receptors(54), hence the reduction in 
RA may leads to uncontrolled gene expression, 
hence fibroids. Omar et al found that RA 
synthesis genes are greatly repressed in the 
presence of progesterone while RA catabolic 
enzyme is increased by progesterone, thereby 
reducing the concentration of RA available. All 
this thus creates a favourable environment that 
supports cell division, and increase the risk of 
UFs (52).
Environmental Factors and Epigenetics in 
Uterine Fibroids
Diet and UFs
	 Limited literatures reported on the effect 
of diet on pathogenesis of UFs. Based on a 
cohort study conducted by Gao et al., women 
who consumed milk or soybean frequently are 
relatively at a higher risk of developing UFs(55). 
This has been postulated to be due to the 
animal or plant estrogen-like substance that is 
well-known to be rich in milk or soybean, which 
may exert estrogen-like functions, stimulating 
the growth of UFs(56–58).
	 On the other hand,the effect of 
alcohol consumption on UFs is controversial. 
However, based on independent studies 
reported(59,60),there is a positive association 
between alcohol consumption and the 
development of leiomyoma by increasing 
the activity of aromatase in the liver resulting 
in conversion of androgens to estrogens, 
which increases the proliferation activity of 
estrogen(61). Alcohol also interrupts with 
the metabolism of estrogen, causing an 
accumulation of endogenous estrogen(62–64). 
Alcohol may also cause an increase in luteinizing 
hormone release, causing an increase in 
estradiol release from the ovaries(65). On 
the contrary, a recent systematic review and 
meta-analysis reported that myoma risk is not 
associated with alcohol intake(66). However, 

the particular study is limited by the number of 
studies included in the analysis.
	 Apart from that, the risk of UFs was 
shown to have an inverse relationship with 
fruit intake, specifically with citrus fruit and 
dietary vitamin A. It has been proposed 
that vitamin A may reduce UFs risk through 
the retinoic acid pathway, which has been 
reported in several studies showing the altered 
expression of retinoic acid in patients with UFs 
as compared tonormal myometrium (67,68). 
When ingested, vitamin A is converted to more 
active compound, including RA, in which the 
RA is important to control gene expression to 
reduce the risk to UFs. In a study conducted by 
Catherino et al.(69), it has been reported that 
there is a reduction in genes involved in the 
formation of RA in leiomyoma, with an increase 
in genes involved in the metabolism of RA, 
thereby contributing to the reduction of active 
RA. The author also reported a higher rate of 
RA metabolism in leiomyoma in comparison 
to myometrium tissue. Complement to this is 
another study by Malik et al.(68) who concluded 
that a down-regulation of cell proliferation, RA 
metabolism and TGF-beta regulation was also 
observed when UFs was exposed to all-trans 
retinoic acid (ATRA).
Exercise and UFs
	 Study conducted by Wyshak et al. 
reported that former non-athletes were at 
1.4times greater risk of developing UFs as 
compared to athletes(70). Supporting this, 
another study reported that the development of 
UFs was decreased in both African-American 
and White women who have exercised for an 
estimated duration of at least 4 hours of vigorous 
activity per week(71).
	 Several mechanisms have been 
proposed to explain the protective effect of 
exercise on UFs.A systemic review and meta-
analysis on the effect of physical activity on 
sex hormones also concluded that physical 
activity decreases the level of circulating sex 
hormones(72). Exercise has been suggested 
to affect estrogen metabolism, such that an 
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this study is limited by the number of studies in 
each sub-analysis(87).
Pollution and UFs
	 Chronic exposure to fine particulate 
matter (PM2.5) have been associated with a 
higher incidence of UFs. In the same study, 
living closer to the roadway was found to 
have a small elevation in the risk of UFs, 
though not statistically significant (88). This 
may be due to the presence of environmental 
endocrine disrupting chemicals (EDC), 
including diethylstilbestrol(89,90), phenols 
(91) and polychlorinated biphenyls (92), that 
have all shown to be associated with UFs. 
Most of the EDCs are synthetic compounds 
that produce estrogenic effect and are able 
to interact with hormone transport proteins 
(93). Air pollution being an important source 
of polycylic aromatic hydrocarbons (PAH)(94) 
and the other components present in the air 
demonstrated involvement in hormonal activity 
and was shown to be bound to aryl-hydrocarbon 
repector (AhR) in in vitro studies (95–97). AhR is 
a receptor that mediates the toxicity of EDC with 
xeno-estrogenic activies(98). AhR participates 
cellular differentiation and proliferation by 
interacting with the genes that are involved with 
it, hence an overexpression of AhR may lead 
to increased cell proliferation and resulting in 
fibroid formation (99,100). A study conducted 
by Bidgoli et al. showed that those living at a 
closer distance to companies producing PAH 
were shown to have a higher risk of UFs with 
AhR over-expression (93).
Aberrant DNA-methylation in UFs
	 Early studies have reported on the 
DNA global hypomethylation in leiomyoma 
tissues as compared to normal myometrium, 
while 95% of DNMT1, a DNA methyltransferase 
responsible for methylation was either equally or 
overexpressed in leiomyomas, that is proposed 
to reflect the increased cell proliferation(9). This 
result is reasonable as hypermethylation of gene 
will lead to gene silencing, thus hypomethylation 
in UFs may be responsible for the increased 
expression of gene that is associated with 

increased estrogen metabolite is formed, 
reducing the concentration of estrogen in the 
body(73). However, there were also studies 
showing that estrogen level is not being affected 
by exercise(74,75). Another mechanism 
proposed is the ability of exercise to increase 
the level of sex hormone-binding globulin, 
thereby reducing the bioavailability of circulating 
estrogen(76,77).
Smoking and UFs
	 Few studies have reported an inverse 
relationship between smoking and uterine 
fibroid(78–81).Parazzini et al., reported that 
the incidence of UFs was 10% lesser in current 
smokers than the control group(79).Study by 
Ross et al.(81), also identified a dose-dependent 
relationship between smoking and UFs, where 
the chain smokers showed one third lesser risk 
than the non-smokers which might be due to 
the anti-estrogenic effect of smoking(82,83). It 
was reported that the components of tobacco 
smoke causes the upregulation of a number of 
genes, including CYP1A1 that catalyzed the 
2-hydroxylation of estradiol(84). This reduces 
the bioavailability of the estrogenically potent 
16α-hydroxylation. Nicotine in cigarette smoke 
also inhibits granulose cell aromatase in a dose-
dependent manner, reduces the conversion of 
androgens to estrone(85).
	 On the contrary, the study conducted by 
Wong et al. found that midlife women who never 
or was a former smoker who were exposed to 
environmental tobacco smoke(≥ 1 person-hour/ 
week) has a higher risk of developing fibroids 
as compared to women who were not exposed. 
The study also reported the difference in the 
risk of UF sin women who is a former smoker 
and those who never smoked, with a two times 
risk in women who is a former smoker(86). 
Another prospective cohort study also reported 
that smoking were unrelated to risk of UFs(60). 
A recent systemic review and meta-analysis on 
cigarette smoking and risk of uterine myoma 
concluded that smoking does not exert a 
significant effect on uterine myoma. However, 
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estrogen as well as cell proliferation. DNMT3A 
and 3B however have a decreased expression 
in UFs, suggested to be associated with the 
global hypomethylation(9). This study thus 
suggests the possibility of epigenetic being 
a part of pathogenesis for UFs. Another 
genome-wide analysis conducted on 18 African 
American women observed that the promoter 
of 55 genes were differentially methylated with 
concomitant differences in the expression of 
mRNA in women with UFs   as compared to 
normal myometrium (101). The promoter region 
of three known tumour suppressor genes, 
KLF11, DLEC1 and KRT19 were studied using 
bisulfide genomic sequencing. CpG islands 
present at the promoter region were identified 
to be hypermethylated in women with UFs as 
compared to adjacent myometrium (101). The 
researchers further reported on an inverse 
relationship between methylation of DNA with 
gene silencing. These studies further support 
the role of epigenetic in the development of 
UFs(101).
	 It has been found that the mRNA of 
estrogen and its transcription is elevated in UFs, 
which might be contributed by the epigenetic 
mechanisms. This is supported by Asada 
et al., who have identified that the promoter 
region of ER-α is hypomethylated in 9 out of 11 
patients in leiomyoma as compared to normal 
myometrium. The ER-α mRNA level was also 
higher in those patients, which showed that the 
aberrant DNA methylation is associated with the 
expression of ER-α mRNA (102.)
	 In addition, Maekawa et al. identified 
120 genes that have a varied DNA methylation 
and mRNA expression between leiomyomas 
and the normal myometrial cells (103). Coherent 
with previous studies that showed an increased 
expression of COL4A1 and COL4A2 in UFs, this 
study also showed that COL4A1 and COL4A2 
gene are hypomethylated with an increased 
transcription in leiomyoma (103). Collagen is 
the most predominant part of the extracellular 
matrix in UFs. An exacerbate production of 
collagen and hydroxylation of collagen was 

associated with an increased size and fibroid 
formation (103). IRS1 was also shown to be 
hypomethylated with increased expression. 
COL4A1 and COL4A2 and COLRA1 gene 
was shown to have a decreased expression 
in IRS1 knockout mice in a separate study, 
which suggests that IRS1 is involved in UFs 
by increasing the gene expression of these 
collagen genes (104).
Micro-ribonucleic acids (mi-RNA) in UFs
	 The study conducted by Wang et al. 
(2007) (105) was one of the earliest studies 
conducted on the transcriptome analysis of 
the uterine tissue that involved miRNA. The 
study revealed that 45 miRNA among the 206 
miRNA analysed were significantly up or down 
regulated in patient with UFs as compared to 
normal myometrium. Let-7 family, miR-21, miR-
23b, miR-29b and miR-197 are among the 
five most common dysregulated miRNA. This 
study also reported that some of the miRNAs 
varied with race and tumour size. Following this, 
various other studies that have been conducted 
to investigate the role of miRNA in UFs have 
also reported an aberrant expression of miRNA 
in UFs as compared to normal myometrium, 
which is proposed to contribute to their aberrant 
mRNA levels and transcription (106,107).
	 As UFs is estrogen-dependent in its 
development, the level of miRNAs that are 
associated with sex-steroid receptor such 
as miR-21, miR-34a, miR-125b and miR-
150 were found to be higher in leiomyoma 
(107). Coherent to the study mentioned earlier 
conducted by Wong et al., Georgieva et al.(106) 
also found that miR-21 is being overexpressed 
in UFs. Overexpression of miR-21 was found to 
elevate the gene and expression of TGF-β3 and 
an increased proliferation of leiomyoma cells 
were observed (108). When TGF-β inhibitor 
was used in Eker rats induced with UFs, the 
incidence and multiplicity of UFs was greatly 
reduced, thus supporting the hypothesis that the 
increased expression of TGF-β caused by miR-
21 is associated with fibroid development(109). 
A recent study investigated on the expression 
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and effect of miR-129 on UFs also reported a 
decreased expression of miR-129 in UFs(110). 
A high expression of miR-129 plays a role in 
cell cycle by inducing apoptosis and was found 
to reduce proliferation of cells by reducing the 
expression of TET1 (110). Hence, the low level 
of miR-129 in UFs allows the fibroid cells to 
proliferate, and plays a role in the pathogenesis 
of UFs. The data obtained from all these studies 
therefore highlights the role of microRNA in the 
development of UFs and therefore it can be 
considered as a potential target for treatment.
Histone Modification in UFs
	 Histone modification has also been 
associated with UFs. A study conducted on 
primary cell cultures from UFs and normal 
myometrium found that histone deacetylase 
(HDAC) level was higher in leiomyoma cells 
that was treated with estradiol, while the activity 
of histone acetyltransferase (HAT) was barely 
detected. An independent study by Wei et al. 
also showed that the level HDAC6 is significantly 
increased in UFs sample as compared to 
myometrium. In addition, it was found that the 

level of HDAC6 is positively associated with 
ER-α, while when HDAC6 was silenced, ER-α 
expression diminished which inhibited the 
growth of leiomyoma cells (111).
	 In 2014, there was another study 
conducted to investigate the epigenetic 
mechanism of KLF11 in regulating CYP450 
enzyme (112). It was found that KLF11 regulate 
CYP450 by first binding to the GC element 
promoter of CYP3A4. Following this, KLF11 
will then attract and bind to SIN3/HDAC. 
Subsequently, HDAC deacetylates histone 
on the CYP3A4 promoter, which causes the 
chromatin to compact and thus silencing the 
CYP3A4 gene (112). Knowing that KLF11 mRNA 
level is lower in UFs than normal myometrium 
(101), the decreased KLF11 and   increased 
expression of CYP3A4 may be responsible for 
metabolizing estrogen to its active metabolite 
which contributes to the development of UFs. 
These therefore supports the involvement of 
histone modification as part of the pathogenesis 
for UFs.
Genetics in Uterine Fibroids

Table 3. Frequency of MED12 mutations in Uterine Fibroids on different populations

 
 

Table 3. Frequency of MED12 mutations in Uterine Fibroids on different populations 

Country Year Ethnicity Frequency Reference 

Finland 2011 - 70% (159/225) Mäkinen et 
al(122) 

Korea 2012 Asian 52.2% (35/67) Je et al(121) 
USA 2012 Black American 78% (18/23) McGuire et 

al(116) 
  White American 66% (79/120)  
Japan 2013 Asian 80% (36/45) Matsubara et 

al(118) 
Finland 2014 - 85.5% (65/76) Heinonen et 

al(115) 
Southern United 
States 

2015 African American, 
Caucasian and 
Hispanic 

63.63% (92/143) Halder et al(123) 

China 2015 Asian 54.39% (93/171) Ye et al.(124) 
Iran 2016 Asian women 31.07% (32/103) Sadeghi et 

al(119) 
Russia 2016 Russian 51.5% (63/122) Osinovskaya et 

al(117) 
China 2017 Asian 43.6% (158/362) Wu et al(125) 
South Korea 2018 Asian women 66.67% (40/60) Lee et al(120) 
 

Tommaso et al. reported on the effect of MED12 gene missense mutations on leiomyoma, uterine myometrium and psudo 
capsule samples leading to an overexpression of IGF-2 suggest its mechanism in causing UFs(126). In addition, studies 
conducted by Kämpjärvi and co-authors reported the mutations on exon 1 and exon 2 of MED12 interferes with the interaction 
between MED12 and cyclin C-CKD8/19, and thereby terminating the mediator-associated CDK kinase activity by interfering 
with cell cycle regulation(127). Several studies have reported on the association of MED12 with the β-catenin/Wnt 
pathway(128–133).Kim et al reported on the activation of the Wnt signalling pathway causing β-catenin to translocate into the 
nucleus, and bound to MED12 and intact mediator, activating the gene expression (131).However, Perot et al. reported, 71.4% 
of the MED12-expressed mutated tumours displayed only membranous β-catenin while the others does not express β-
catenin(134). The author further concluded that there was no association between MED12 mutations and β-catenin 
localization(134). Further supporting this, another study combining mRNA and miRNA differential expression between UFs and 
myometrium reported on the downregulation of Wnt pathway causing an upregulation of the focal adhesion pathway in UFs, 
suggesting MED12 mutation in leiomyoma may not act through the β-catenin/ Wnt pathway(135). 

Overexpression of HMGA2 gene in UFs 

About 50% of uterine leiomyoma showed abnormal karyotype. Among this, 20% were attributed to the 12q14-q15 mutation, 
affecting HMGA2(136). High-mobility group (HMG) proteins are heterogeneous, non-histone chromosol proteins that are 
grouped according to their electrophoretic properties into one of the three distinct families(137). HMGA2(previously was known 
as HMGIC) genes encodes non-histone proteins that bind to DNA, which participates in the pathway that involves protein 
complexes assembly, leading to conformational changes in the structure of chromatin. It is also involved in regulation of gene 
transcription, cell differentiation, apoptosis and proliferation (138). 

Decreased expression of HMGA2causes a decrease in VEGF-A, VEGF-C and FGF-2 in oral squamous cell carcinoma, which 
are the markers for angiogenesis(139), suggesting the role of HMGA2 in promoting angiogenesis in cancer.This is further 
supported by the study conducted by Helmke et al. that the expression of fibroblast growth factor 2 (FGF-2) are significantly 
higher in those with a mutated HMGA2 as compared to those with a normal karyotype in women with UFs. The author also 
mentioned that the FGF-2 expression and the level of HMGA2 overexpression have a linear relationship with the tumour 
size(140).A recent study  reported that the angiogenic expression, specifically, VEGFA, EGF, bFGF, TGFα, VEGFR1 and 
VEGFR2 is significantly higher in leiomyomas with HMGA2as compared with leiomyomas with MED12 and myometrium (141). 
It was also proposed that the effect of HMGA2 on angiogenesis might act through IGF2BP2 and pAKT as the overexpression of 
HMGA2 upregulated IGF2BP2 and pAKT(141). According to Liu et al., it was found that the overexpression of HMGA2 causes 
a significant increase in the level of PCNA (a measure of cell growth) and a reduction in the level of p21 (cyclin-dependent 
kinase inhibitor 1)(142). This suggests the importance of HMGA2 in the proliferation of leiomyoma. Further in this study, 
HMGA2 was shown to bind to the promoter of p62 thus suppressing its transcription.Thereduced level of p62 increases the 
expression of estrogen receptor-α which enhances the proliferation of UFs(142). The author concluded that there is a causal 
role of the HMGA2-p62-ERα axis in the increased ERα expression in HMGA2-UFs, and is thus a possible target in the 
treatment of HMGA2-UFs(142). In addition, HMGA2-LM was found to significantly up-regulate the proto-oncogene pleomorphic 
adenoma gene 1 (PLAG1), suggesting the possibility of it inducing tumorigenesis through the activation of PLAG1(143). 
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Mutation of MED12 gene in UFs
	 MED12 is one of the important genes 
involved in the development of UFs, by bridging 
the interaction between MED13 and cyclin 
C-CDK8 that activates the kinase activity of 
CDK8, thereby regulate gene transcription(113). 
In a study conducted by Mittal et al, it was shown 
that mice that expressed MED12c.131G>A 
variant showed chromosomal rearrangements 
with a greater sized leiomyoma lesions, 
suggesting the importance of this mutation in 
the pathogenesis of UFs(114).
	 Various studies have reported on 
the association of UFs with the mutation of 
MED12, with frequency varying from 31.07% 
to 85.5% in different populations (Table 3). 
Among the mutations, missense is the most 
prominent mutation reported in most of the 
studies(115–121).	
	 Tommaso et al. reported on the effect of 
MED12 gene missense mutations on leiomyoma, 
uterine myometrium and psudo capsule samples 
leading to an overexpression of IGF-2 suggest 
its mechanism in causing UFs(126). In addition, 
studies conducted by Kämpjärvi and co-authors 
reported the mutations on exon 1 and exon 
2 of MED12 interferes with the interaction 
between MED12 and cyclin C-CKD8/19, and 
thereby terminating the mediator-associated 
CDK kinase activity by interfering with cell cycle 
regulation(127). Several studies have reported 
on the association of MED12 with the β-catenin/
Wnt pathway(128–133).Kim et al reported on the 
activation of the Wnt signalling pathway causing 

β-catenin to translocate into the nucleus, and 
bound to MED12 and intact mediator, activating 
the gene expression (131).However, Perot et 
al. reported, 71.4% of the MED12-expressed 
mutated tumours displayed only membranous 
β-catenin while the others does not express 
β-catenin(134). The author further concluded 
that there was no association between MED12 
mutations and β-catenin localization(134). 
Further supporting this, another study 
combining mRNA and miRNA differential 
expression between UFs and myometrium 
reported on the downregulation of Wnt pathway 
causing an upregulation of the focal adhesion 
pathway in UFs, suggesting MED12 mutation in 
leiomyoma may not act through the β-catenin/ 
Wnt pathway(135).	
Overexpression of HMGA2 gene in UFs
	 About 50% of uterine leiomyoma 
showed abnormal karyotype. Among this, 20% 
were attributed to the 12q14-q15 mutation, 
affecting HMGA2(136). High-mobility group 
(HMG) proteins are heterogeneous, non-histone 
chromosol proteins that are grouped according 
to their electrophoretic properties into one of the 
three distinct families(137). HMGA2(previously 
was known as HMGIC) genes encodes non-
histone proteins that bind to DNA, which 
participates in the pathway that involves protein 
complexes assembly, leading to conformational 
changes in the structure of chromatin. It is also 
involved in regulation of gene transcription, cell 
differentiation, apoptosis and proliferation (138).
Decreased expression of HMGA2 causes a 

Table 4. Frequency of HMGA2 mutations in leiomyoma

 
 

Previous studies proposed that MED12 and HMGA2 mutations are mutually exclusive events in leiomyomas(133,143,144). This 
is supported by Bertschet al. that found that HMGA2 overexpression occur exclusively in leiomyomas without MED12 
mutation(145). 

However, in contrary to the previous studies, recent studies observed that HMGA2 over-expression were present significantly in 
leiomyoma that also showed mutations in MED12, indicating the possibility of co-occurrence in patients with 
leiomyoma(146,147). Table 4 summarizes the frequency of HMGA2 mutations in different studies. 

Table 4. Frequency of HMGA2 mutations in leiomyoma 

Country Year Frequency Reference 

Chicago 2015 10.1% (18/178) Bertsch et al(145) 
Brazil 2018 69.0% (29/42) Mello et al(147) 
Spain 2018 65% (13/20) Galindo et al(146) 
Finland 2016 28.7% (27/94) Mehine et al(143) 
Finland 2017 Conventional UFs: 24.6% 

(16/65) 
Histopathological UFs 
variant: 13.8% (13/94) 

Makinen et al(148) 

 

Fumarate hydratase (FH) gene mutation in UFs 

Fumarate hydratase (FH) is a tumour suppressor gene since most of the tumours that have resulted from its mutation were 
found to exhibit a biallelic inactivation of this gene, leading to a condition known as hereditary leiomyomatosis and renal cell 
cancer (HLRCC)(149,150). It was found that 75-100% of women with FH mutation developed UFs(151,152).However, FH gene 
mutation as a leading cause for UFs is relatively rare as compared to MED12 and HMGA2, which accounts for about 0.4-1% of 
leiomyoma cases(153,154). 

The mechanism as to how the mutation in FH gene causes tumorigenesis in HLRCC remains unclear, however the most 
common mechanism proposed is the activation of hypoxia pathway caused by the effect of FH deficiency on HIF1 transcription 
factor. The bi-allelic deactivation of FH in the tumour cells altered the production of ATP from oxidative phosphorylation, 
resulting in a shift to aerobic glycolysis (Warburg effect). The increased fumarate level stabilize the hypoxia-inducible factor 
(HIF)-1α and an increased in VEGF and GLUT1(155–157).However, there were studies reported on the accumulation of 
fumarate modified the cysteine residue of KEAP1 and causes the succination of KEAP1, affecting the action of KEAP1 in 
repressing NRF2 mediated antioxidant response leading to accumulation of NRF2 (158,159). In addition to that, the 
accumulation and activation of NRF2 have been reported to be associated with many cancers (160).Supporting this is a study 
conducted by Mehineet al. which reported NRF2 pathway was the most significantly dysregulated pathway in UFs associated to 
FH mutations, while the H1F1α pathway was not significantly affected(143). 

COL4A5-COL4A6 gene mutation in UFs 

COL4A5-COL4A6 gene found on chromosome X, have been associated with UFs. Alport Syndrome, a genetic disorder has a 
specific COL4A5-COL4A6 deletion presented together with diffuse leiomyomatosis(161). Whole-genome sequencing revealed 
a small portion of patients with diffuse leiomyomatosis showed deletion of COL4A5-COL4A6 gene (162). IRS4 gene which is 
close to COL4A5, was found to be highly expressed in UFs with COL4A5-COL4A6 deletion(143,162). IRS4 gene codes for 
insulin receptor substrate 4, which was identified to play a significant role in the PI3K pathway(163). The activation of the PI3K-
AKT-mTOR pathway leads to an increased cell proliferation, resulting in fibroid(164,165). In addition, IRS4 also enhanced the 
effect of IGF-I in overcoming cell cycle arrest, which also contributes to the increased cell proliferation.(166) 

Microbiota in Uterine Fibroids 

Recent studies have reported on the association of gut microbiota to the development of UFs. . It has been identified that 
intestinal microbiota is able to affect systemic estrogen level, supporting the estrobolome concept, thus affecting diseases and 
cancers that are associated with estrogen(167). These are attributed to the β-glucuronidase that is secreted by the gut flora, 
which is an enzyme thatdeconjugatesestrogen(167). Thus, this affects the endogenous metabolism of estrogen by altering the 
enterohepatic circulation of estrogen, and increases the free estrogen that is able to bind to estrogen receptors to exert its 
physiological effect. This is in line with a previous study that showed that the exposure to antibiotics reduce intestinal flora, 
which results in large amount of conjugated estriol being excreted unchanged in the faeces and a reduction in urinary 
estrogen(168), which supports the function of gut microbiota in affecting estrogen level.  

Lignans are one of the classes of phytoestrogens that are derived from plants. In humans, lignans are metabolized into 
enterolignans by the gut microbiome. Several studies have established the relationship between lignan or enterolignan 
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decrease in VEGF-A, VEGF-C and FGF-2 in 
oral squamous cell carcinoma, which are the 
markers for angiogenesis(139), suggesting 
the role of HMGA2 in promoting angiogenesis 
in cancer.This is further supported by the 
study conducted by Helmke et al. that the 
expression of fibroblast growth factor 2 (FGF-2) 
are significantly higher in those with a mutated 
HMGA2 as compared to those with a normal 
karyotype in women with UFs. The author also 
mentioned that the FGF-2 expression and 
the level of HMGA2 overexpression have a 
linear relationship with the tumour size(140).A 
recent study  reported that the angiogenic 
expression, specifically, VEGFA, EGF, bFGF, 
TGFα, VEGFR1 and VEGFR2 is significantly 
higher in leiomyomas with HMGA2as compared 
with leiomyomas with MED12 and myometrium 
(141). It was also proposed that the effect of 
HMGA2 on angiogenesis might act through 
IGF2BP2 and pAKT as the overexpression of 
HMGA2 upregulated IGF2BP2 and pAKT(141). 
According to Liu et al., it was found that the 
overexpression of HMGA2 causes a significant 
increase in the level of PCNA (a measure 
of cell growth) and a reduction in the level of 
p21 (cyclin-dependent kinase inhibitor 1)(142). 
This suggests the importance of HMGA2 in the 
proliferation of leiomyoma. Further in this study, 
HMGA2 was shown to bind to the promoter of p62 
thus suppressing its transcription.The reduced 
level of p62 increases the expression of estrogen 
receptor-α which enhances the proliferation of 
UFs(142). The author concluded that there is 
a causal role of the HMGA2-p62-ERα axis in 
the increased ERα expression in HMGA2-UFs, 
and is thus a possible target in the treatment 
of HMGA2-UFs(142). In addition, HMGA2-
LM was found to significantly up-regulate the 
proto-oncogene pleomorphic adenoma gene 
1 (PLAG1), suggesting the possibility of it 
inducing tumorigenesis through the activation 
of PLAG1(143). Previous studies proposed that 
MED12 and HMGA2 mutations are mutually 
exclusive events in leiomyomas(133,143,144). 
This is supported by Bertsch et al. that found 
that HMGA2 overexpression occur exclusively 

in leiomyomas without MED12 mutation(145).
However, in contrary to the previous studies, 
recent studies observed that HMGA2 over-
expression were present significantly in 
leiomyoma that also showed mutations 
in MED12, indicating the possibility of co-
occurrence in patients with leiomyoma(146,147). 
Table 4 summarizes the frequency of HMGA2 
mutations in different studies.
Fumarate hydratase (FH) gene mutation in 
UFs
	 Fumarate hydratase (FH) is a tumour 
suppressor gene since most of the tumours 
that have resulted from its mutation were found 
to exhibit a biallelic inactivation of this gene, 
leading to a condition known as hereditary 
leiomyomatosis and renal cell cancer (HLRCC)
(149,150). It was found that 75-100% of women 
with FH mutation developed UFs(151,152).
However, FH gene mutation as a leading cause 
for UFs is relatively rare as compared to MED12 
and HMGA2, which accounts for about 0.4-1% 
of leiomyoma cases(153,154).
	 The mechanism as to how the mutation 
in FH gene causes tumorigenesis in HLRCC 
remains unclear, however the most common 
mechanism proposed is the activation of 
hypoxia pathway caused by the effect of FH 
deficiency on HIF1 transcription factor. The bi-
allelic deactivation of FH in the tumour cells 
altered the production of ATP from oxidative 
phosphorylation, resulting in a shift to aerobic 
glycolysis (Warburg effect). The increased 
fumarate level stabilize the hypoxia-inducible 
factor (HIF)-1α and an increased in VEGF and 
GLUT1(155–157).However, there were studies 
reported on the accumulation of fumarate 
modified the cysteine residue of KEAP1 and 
causes the succination of KEAP1, affecting the 
action of KEAP1 in repressing NRF2 mediated 
antioxidant response leading to accumulation 
of NRF2 (158,159). In addition to that, the 
accumulation and activation of NRF2 have been 
reported to be associated with many cancers 
(160).Supporting this is a study conducted by 
Mehineet al. which reported NRF2 pathway 
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was the most significantly dysregulated 
pathway in UFs associated to FH mutations, 
while the H1F1α pathway was not significantly 
affected(143).
COL4A5-COL4A6 gene mutation in UFs
	 COL4A5-COL4A6 gene found on 
chromosome X, have been associated with 
UFs. Alport Syndrome, a genetic disorder has 
a specific COL4A5-COL4A6 deletion presented 
together with diffuse leiomyomatosis(161). 
Whole-genome sequencing revealed a small 
portion of patients with diffuse leiomyomatosis 
showed deletion of COL4A5-COL4A6 gene 
(162). IRS4 gene which is close to COL4A5, 
was found to be highly expressed in UFs with 
COL4A5-COL4A6 deletion(143,162). IRS4 
gene codes for insulin receptor substrate 4, 
which was identified to play a significant role 
in the PI3K pathway(163). The activation of the 
PI3K-AKT-mTOR pathway leads to an increased 
cell proliferation, resulting in fibroid(164,165). 
In addition, IRS4 also enhanced the effect of 
IGF-I in overcoming cell cycle arrest, which also 
contributes to the increased cell proliferation.
(166)
Microbiota in Uterine Fibroids
	 Recent studies have reported on 
the association of gut microbiota to the 
development of UFs. It has been identified that 
intestinal microbiota is able to affect systemic 
estrogen level, supporting the estrobolome 
concept, thus affecting diseases and cancers 
that are associated with estrogen(167). These 
are attributed to the β-glucuronidase that is 
secreted by the gut flora, which is an enzyme 
that deconjugates estrogen(167). Thus, this 
affects the endogenous metabolism of estrogen 
by altering the enterohepatic circulation of 
estrogen, and increases the free estrogen that 
is able to bind to estrogen receptors to exert 
its physiological effect. This is in line with a 
previous study that showed that the exposure 
to antibiotics reduce intestinal flora, which 
results in large amount of conjugated estriol 
being excreted unchanged in the faeces and 
a reduction in urinary estrogen(168), which 

supports the function of gut microbiota in 
affecting estrogen level. 
	 Lignans are one of the classes of 
phytoestrogens that are derived from plants. 
In humans, lignans are metabolized into 
enterolignans by the gut microbiome. Several 
studies have established the relationship 
between lignan or enterolignan exposure and 
the risk of breast cancer, with high lignan or 
enterolignan exposure reducing the breast 
cancer risk(169–171). After ingesting lignan, it 
has to be metabolized by the gut microbiome 
into the lignan metabolites enterolignans, 
enterolactone and enterodiol before it is able 
to be absorbed into the systemic circulation to 
produce any physiological effect(172). One of 
the mechanisms proposed is that enterolactone 
being structurally similar to estrogen, is able 
to inhibit enzymes responsible for estrogen 
synthesis as well as metabolism, thereby 
reducing the concentration of estrogen(173). 
Enterolactone has also been shown to reduce the 
activation of NF-κB and prevent the degradation 
of I-κB, resulting in a decrease in TNFα 
production(174). NF-κB is a transcription factor 
that is involved in regulating angiogenesis, and 
thus is often activated in cancer cells. In contrast 
to this, another study observed no significant 
association between enterolignan with NF-
κB(174,175). However, it was proposed that 
enterolignan reduces the proliferation of cancer 
cells via VEGF-associated pathways(175). 
Therefore, dysbiosis in the gut flora can affect 
the metabolism of lignan and thus will affect 
the development of cancer. This is also highly 
applicable in UFs as it is highly estrogen-
dependent. This hypothesis is supported by 
Atkinson et al. that have concluded that there 
is a modest inverse association between lignan 
excretion and uterine fibroid risk(176).
Role of extracellular matrix in Uterine 
Fibroids
	 Several studies showed an altered 
extracellular matrix in patients with UFs as 
compared to normal. Collagen consists of a 
large component in the ECM of fibroid, which 
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is at least 37%(177). The collagen content was 
found to be 3.7-fold higher in UF sas compared 
to the normal myometrium(178). Fibroids have 
been reported to be stiffer than the normal 
myometrium, with collagen being one of the 
contributors(179). A recent study by Jayes et 
al. have shown that the stiffness of and size 
of fibroid are not associated with the collagen 
content(177). However, cross-linking of collagen 
was reported to be present more frequently 
in UFs and it was thought to attribute to the 
stiffness in fibroids(178,180). It has been known 
that mechanotransduction affects cell activity 
by converting physical forces into biochemical 
signals, which affects cellular activity such as 
proliferation and apoptosis. With that being said, 
a change in stiffness as observed in fibroids will 
thus affect the regulation of cell proliferation and 
apoptosis.
	 In analysing the GAG in leiomyoma, the 
composition seemed to be altered with dermatan 
sulphate and chondroitin sulphate levels being 
increased as compared to normal tissues, with 
a decreased heparin sulphate(181). Dermatan 
sulphate consists of L-glucuronic acid and 
D-glucuronic acid. A positive correlation has 
been reported between D-glucuronic acid 
content in dermatan sulphate with the size 
of tumor.Berto et al. reported that a higher 
proportion of D-glucuronic acid was found in 
dermatan sulphate, which may have contributed 
to the increased tumour size.(181)
	 Another proteoglycan involved in 
the pathogenesis of UFs is versican, which 
was found to be overexpressed in leiomyoma 
tissues(182,183). Versican binds to certain 
GAG affecting cell growth and differentiation. 
It was reported that the isoform V0 and V1 of 
versican were upregulated in symptomatic 
UFs women as compared to asymptomatic 
women(182). This elevation could affect the 
stiffness and mechanical stress of the cells.
Versican knockdown in UFs cells was found 
to have decreased estrogen receptor-1 and 
progesterone-A mRNA expression, making a 
potential target for treatment (182).

When there is a change in the ECM component, 
it will affect the stiffness and thus, affecting 
the development of fibroid. In the normal 
myometrium, the homeostasis is achieved by the 
assistance of matrix metalloproteinases (MMP) 
which is involved in remodelling and degrading 
of certain constituents of the ECM such as 
collagen, which contributes to the stiffness of 
ECM(184). Studies throughout the years have 
proved that the activity of MMP-2 is significantly 
higher in UFs as compared to control(185–187).  
MMP-2 mediates the degradation of collagen 
type IV as well as other components of ECM 
consequently, interfering with differentiation and 
proliferation(188,189).
Oxidative stress and hypoxia in Uterine 
Fibroids
	 Studies have reported on the 
association of oxidative stress and hypoxia to 
UFs. The subset of myometrial cells, known as 
side population of myometrium cells (myoSP)
proliferated into larger leiomyoma tumour as 
compared to the myometrial main population 
(myoMP) when it is transplanted into immune-
deficient mice, indicating that these myometrial 
stem cells play a vital role in the development 
of UFs(190). Interestingly, it was observed that 
these myoSP proliferates in vitro in hypoxic 
condition while it is not able to proliferate 
efficiently in vitro under normal condition.The 
greater cell proliferation achieved by both myoSP 
and myoMP in hypoxic condition suggests that 
low oxygen condition may be a driving force 
in the differentiation and proliferation into 
UFs(191).
	 Ishikawa et al. have reported that 
hypoxia increased hypoxia inducible factor 1α 
(HIF-1α) protein expression in the leiomyoma 
smooth muscle cells, with an upregulation 
of mRNA of several HIF-responsive genes 
(ALDOA, ENO1, LDHA, VEGFA, PFKFB3, 
and SLC2A1)(192). The increased expression 
of HIF-1α protein was suggested to reduce 
apoptosis and increase proliferation by 
repressing p53, a tumour suppressor protein 
and by increasing the expression of BCL-2, an 
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anti-apoptosis protein(193).
	 In addition to that, the oxidative stress 
markers and antioxidants have been shown 
to vary significantly in leiomyoma cells as 
compared to the normal myometrium. Several 
studies have reported that the level and activity 
of several antioxidants such as thiol, superoxide 
dismutase and catalase were decreased in 
UFs(194–196). On the contrary, the antioxidant 
enzyme activities such as catalase and 
glutathione peroxidase was shown to increase in 
other independent studies(197,198). However, 
these studies have the same conclusion, which 
is the increased in activity of these antioxidant 
enzymes is due to the compensatory mechanism 
to the mild oxidative stress in UFs. One of the 
mechanisms identified as to how ROS affects 
cell proliferation is through the PDGF-induced 
MAPK1/MAPK3 pathway. ROS is a critical 
intermediate in this pathway and the use of 
NADPH oxidase inhibitor DPI reduces ROS 
and was shown to inhibit the platelet derived 
growth factor (PDGF)-induced MAPK1/MAPK3 
activation, suggesting a vital role of ROS in UFs 
proliferation.(199)
Conclusion
	 Uterine fibroids are a very common 
benign condition that affects women throughout 
the world. The pathogenesis is multifactorial 
and unclear, however various studies were 
continuously being carried out to identify the 
possibility of different factors in contributing to 
the pathogenesis of UFs. Early studies have 
identified the dependency of fibroid on sex 
hormones for its growth and development. 
However, genetic seems to play an important 
role as well, with different frequency of genetic 
mutation occurring in different ethnic, race and 
demography. Similarly, environmental factor, 
epigenetic, microbiota and extracellular matrix 
have also been implicated in the development 
of UFs.
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